Нехай задано рівнобічну трапецію ABCD, основи паралельні AD||BC, сторони AB=CD рівні між собою, BH⊥AD, де BH=12 см – висота трапеції, опущена на сторону AD,
AH=5 см, HD=11 см, звідси AD=AH+HD=5+11=16 см.
Розглянемо прямокутний трикутник ABH (∠AHB=90) та знайдемо за формулою Піфагора гіпотенузу AB:
AB^2=AH^2+BH^2, звідси
Оскільки трапеція ABCD – рівнобічна, то відповіні сторони рівні CD=AB=13 см.
Опустимо ще одну висоту CK на сторону AD, тоді кут прямий CK⊥AD (∠CKD=90).
Розглянемо прямокутні трикутники ABH і KCD.
У них ∠BAH=∠CKD – як кути при основі AD у рівнобічній трапеції ABCD (за властивістю), і CD=AB=13 см.
Тому, за ознакою рівності прямокутних трикутників, трикутники ABH і KCD рівні (за гіпотенузою і гострим кутом), звідси слідує AH=KD=5 см.
Тоді у рівнобічній трапеції:
HK=HD-KD=11-5=6 см, тому BC=HK=6 см.
Знайдемо периметр рівнобічної трапеції ABCD:
P=AB+BC+CD+AD=13+6+13+6=48 см.
Відповідь: 48 см – В.
Поделитесь своими знаниями, ответьте на вопрос:
EF тузуі мен A € EF берілген EF кесіндісі мен AB тузуі қалай орналасады
трикутник АВС рівнобедрений, АВ=АС, тоді кутАВС=кутАСВ= (180-кутВАС)/2=(180-60)/2=60, трикутник АВС рівносторонній, всі кути=60, АВ=АС=ВС=4*корінь2,
трикутник ВКС , ВК=СК=корінь(ВС в квадраті/2)=корінь(32/2)=4,
трикутник АВК прямокутний АК=корінь(АВ в квадраті-ВК в квадраті)=корінь(32-16)=4 - відстань від точки до площини