Поделитесь своими знаниями, ответьте на вопрос:
.Через конец А отрезка АВ проведена плоскостью . Через точку М, принадлежащей отрезку АВ (такую что АМ : МВ = 1 : 3) и точку В проведены параллельные прямые, пересекающие плоскость в точках М1 и В1, соответственно. а) Докажите, что точки А, В1, М1 лежат на одной прямой.б) Найдите ВВ1, если ММ1 = 5 см.
Дано: ΔABC - равнобедренный, АВ=ВС, Sabc= 192 см², АС=АВ+4, окружность, впис. в ΔАВС, OR - радиус, OR= 6 см
Найти: АВ, ВС, АС.
Решение.
Пусть АВ=ВС= х см. По условию основание на 4 см больше, чем боковая сторона, значит, АС= х+4.
Площадь треугольника равна произведению полупериметра треугольника на радиус вписанной окружности.
S= p•r, где S - площадь треугольника, p - его полупериметр, r - радиус вписанной окружности.
Находим периметр ΔАВС.
Р= АВ+ВС+АС= х+х+х+4= 3х+4.
Полупериметр равен соответственно р= (3х+4)/2.
S= p•r;
192= (3x+4)/2 •6;
192= (3х+4)•3;
192= 9х+12;
9х= 192–12;
9х= 180;
х= 20 (см)
Значит, АВ=ВС= 20 см, АС= х+4= 20+4= 24 см.
ответ: 20 см, 20 см, 24 см.
Рисунок фактически здесь вообще не нужен, однако, если Вам так легче это представить...