pokupatel688
?>

Выбери верные утверждения: 0∈N 0∈Z 17−−√∈Z −16∈Z 5∈Z −5∈N 15∈N −15∈Z 16∈N

Геометрия

Ответы

Щуплова Александр
Отметим, что наименьший угол прямоугольной трапеции, это единственный острый угол. (на нашем рисунке это <D).
SinD=EP/HD => EP=DH*SinD.
SinD=GP/HC => GP=HC*SinD.
PH=√(GP*PE), как высота из прямого угла (<GHE=90°, так как опирается на диаметр GE). Тогда PH=SinD√(HD*CH).
Но √(HD*CH)=OH - высота из прямого угла в прямоугольном треугольнике СOD c <COD=90° (свойство трапеции: "В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°"). А так как ОН=АВ/2=R, то РН=(АВ/2)*SinD.
Площадь четырехугольника EFGH равна сумме площадей треугольников EFG и EHG.
Sefg=(1/2)*EG*OF = (1/2)*AB*(1/2)AB=AB²/4.
Sehg=(1/2)*EG*PH = (1/2)*AB*(AB/2)*SinD=AB²*SinD/4.
Тогда площадь четырехугольника EFGH равна (AB²/4)*(1+SinD).
Площадь трапеции равна (1/2)*(BC+AD)*AB. Но поскольку в трапецию вписана окружность, то ВС+АD=АВ+СD (свойство: "В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон").
В треугольнике CDK: CK=CD*SinD, но СК=АВ, значит CD=AB/SinD.
Тогда Sabcd=(1/2)*(AB+AB/SinD)*AB =AB²*(1+1/sinD)/2.
По условию Sabcd=4*Sefgh. или (АВ²*(1+1/sinD)/2=4*(AB²/4)*(1+SinD).
Отсюда 1/SinD==2 и SinD=1/2.
ответ: острый угол D трапеции равен 30°.

Впрямоугольную трапецию вписана окружность. точки касания этой окружности со сторонами трапеции явля

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выбери верные утверждения: 0∈N 0∈Z 17−−√∈Z −16∈Z 5∈Z −5∈N 15∈N −15∈Z 16∈N
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

petrowich076813
ВладимировичСтанислав
shuramuji
Сорокина-Светлана
picsell
sashulyah3183
Александровна
MAXIM76748
ccc712835
alfakurs
Татьяна Гришаевич
kruttorg
nadejdashin508
sov0606332
ooottdi