1)Смежные углы — два угла с общей вершиной, одна из сторон которых — общая, а оставшиеся стороны лежат на одной прямой (не совпадая) 2)Два смежных угла вместе составляют развернутый угол. Мера развернутого угла 180град. Значит сумма мер двух смежных углов равна 180 градусов 3)дано:
развернутые углы а и б
лучи с и д проходят между сторонами соответственных углов
5)основа - развернутый угол. принятый за 180 градусов. А половина развернутого называется ПРЯМЫМ угол. меньше прямого острый угол. больший прямого. но меньший развернутого тупой. 6)Вертикальные углы - два угла, у которых стороны одного являются продолжениями сторон другого 7)Вертикальные углы равны!
Представь углы 1 , 3 и 2 , 4. Угол 2 является смежным как с углом 1 так и с углом 3. Два угла , у которых одна сторона общая а две другие являются продолжениями одна другой, называються смежными. По свойству смежных углов < 1+<2=180градусов. <3+<2=180градусов
Отсюда получаем <1=180-<2. <3=180-<2 таким образом, градусные меры углов 1 и 3 равны. Значит и сами углы равны. Теорема доказана
2)Два смежных угла вместе составляют развернутый угол. Мера развернутого угла 180град. Значит сумма мер двух смежных углов равна 180 градусов
3)дано:
развернутые углы а и б
лучи с и д проходят между сторонами соответственных углов
углы 1и3 2и4 смежные
углы 1 и 2 равны
доказательство:
1. угол а: угол 3=180-угол1(по аксиоме измерение углов) | угол 3=180-угол1
уголб:угол 4=180-угол 2(по аксиоме измерение углов) |=> угол 4=180-угол1
угол1=углу2(по условию) |углы 3и4 равны
5)основа - развернутый угол. принятый за 180 градусов. А
половина развернутого называется ПРЯМЫМ
угол. меньше прямого острый
угол. больший прямого. но меньший развернутого тупой.
6)Вертикальные углы - два угла, у которых стороны одного являются продолжениями сторон другого
7)Вертикальные углы равны!
Представь углы 1 , 3 и 2 , 4. Угол 2 является смежным как с углом 1 так и с углом 3. Два угла , у которых одна сторона общая а две другие являются
продолжениями одна другой, называються смежными. По свойству смежных углов < 1+<2=180градусов. <3+<2=180градусов
Отсюда получаем <1=180-<2. <3=180-<2 таким образом, градусные меры углов 1 и 3 равны.
Значит и сами углы равны. Теорема доказана