Поделитесь своими знаниями, ответьте на вопрос:
Задача. Отрезки AB и CD пересекаются в точке Е, которая является серединой отрезка AB, a 2 EAD и2 ЕВС равны. Докажите, что треугольники СВЕ иADE равны. Чему равна длина отрезка AD, еслиотрезок CB равен 7 см?
Смари:
Нам дан прямоугольник, а как нам известно, в прямоугольнике у нас все углы равны 90°. Потом мы проводим диагональ от угла А до угла С, а там нам уже говорят, что угол, образованный благодаря этой диагонали (САД), равен 30°.
Что же мы теперь имеем? Прямоугольный треугольник с углами А, С и Д. Мы ведь уже знаем, что угол Д =90°(ну там выше написано), а угол САД =30°, а по какой-то там теореме или ещё чему-то мы знаем, что катет(такая маленькая сторона треугольника) равен половине гипотенузы (такая самая большая сторона в треугольнике), если он лежит на против угла в 30°. А т.к. нам ещё сказали, что диагональ(та же наша гипотенуза) равна 16см, то получается, что самый маленький катет равен 16:2=8 см. "А что же дальше?" спросишь ты... Наш катет является шириной нашего прямоугольника! Короче, там по условию длина на три см больше, чем ширина, так что просто 8+3=11см.
И мы узнали, что ширина равна 8см, а длина равна 11.
Еее