1. Каждый центральный угол соответствует одной стороне. Всего центральных углов
360:20=18
Поэтому у многоугольника 18 сторон.
2. Сумма всех внешних углов любого многоугольника, взятых по одному при каждой вершине, равна 360 градусов. Поэтому в условиях задачи
360:30=12 углов.
3. Каждый внешний угол правильного 12 угольника равен
360:12=30 градусов, а смежный ему внутренний угол равен
180-30=150 градусов.
4. Поскольку все стороны правильного треугольника равны, то они равны
По теореме синусов радиус описанного круга равен
Поделитесь своими знаниями, ответьте на вопрос:
Основания прямоугольной трапеции 12см и 16см большая боковая сторона 5см вычислите площадь трапеции
Прямоугольная трапеция.
Основания (трапеции) = 12 см и 16 см.
Боковая сторона = 5 см.
Найти:S (трапеции) = ? см².
Решение:Обозначим прямоугольную трапецию буквами ABCD.
AD - меньшее основание, BC - большее основание.
Так как любая наклонная > перпендикуляра ⇒
DC - большая боковая сторона, AB - меньшая боковая сторона, а также высота данной прямоугольной трапеции.
Проведём из точки D к большему основанию BC прямоугольной трапеции ABCD перпендикуляр DE. Этот перпендикуляр - высота.
CE = BC - AD = 16 - 12 = 4 см.
Найдём высоту DE по теореме Пифагора (a = √(b² - c²), где a и b - катеты, c - гипотенуза):
DE = √(DC² - CE²) = √(5² - 4²) = √(25 - 16) = √9 = 3 см.
⇒ S трапеции ABCD = (AD + BC)/2 * DE = (12 + 16)/2 * 3 = 42 см².
ответ: S трапеции ABCD = 42 см².