innesagrosheva22
?>

Дана прямая призма, угол С=90, AA1=8, AB=13, AC=12. найти расстояние между прямыми AC1 и BB1.

Геометрия

Ответы

alazaref

ответ:1)60 2)32

Объяснение:

1)BD диагональ прямоугольника

У прямоугольника ABCD все углы по 90 градусов (свойство прямоугольника)

Рассмотрим треугольник BAD , угол A=90 градусов, AD=15

AB=5\sqrt{3}

Найдем тангенс угла ABD , он равен \frac{AD}{AB} = \frac{15}{5\sqrt{3} } =\frac{3}{\sqrt{3} }= \sqrt{3}

По таблице это 60 градусов

ответ=60

2)Угол A равен 45 градусов, а значит угол B=90-45=45 градусов

Отсюда следует что Треугольник ABC равнобедренный

AC=BC

Пусть AC = x тогда BC= x

Составим уравнение по теореме Пифагора

x^{2} +x^{2} = (8\sqrt{2})^{2} \\2x^{2} = 128 |2\\x^{2} =64\\x1=8\\x2=-8

-8  не соответствует условиям т.к. число отрицательно

S= ACxBC/2= 8x8/2= 32

ответ=32

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дана прямая призма, угол С=90, AA1=8, AB=13, AC=12. найти расстояние между прямыми AC1 и BB1.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

nmakarchuk
Asplaksina
raa-0485428
Vasilevna_Shabanova1502
sryzhova6392
skononova01
es196
artem-whitenoise142
kormilitsynarita
martinson1136
Суравцова_Алексей669
many858
vdnh451
Rudakova_Yana
ЮрьевичКарпова1564