в четырехугольнике АВСD диагонали АС и BD пересекаются в точке О. ВС = 2, СD = 4, угол bac равен bdc =40°. угол cad = 2bac. диагональ АС является биссектрисой ВСD. Найдите площадь треугольника COD
Угол между двумя пересекающимися хордами равен полусумме высекаемых ими дуг. Значит градусная мера дуги АВ плюс градусная мера дуги СD равна 120°. Следовательно, сумма центральных углов <AОВ+<CОD=120°, а 0,5<AOB+0,5<COD=60°. Пусть <AOB=α, a <COD=β тогда α/2+β/2=60°. Длина хорды равна L=2R*Sin(α/2), где α - центральный угол, опирающийся на дугу, стягиваемую хордой. В нашем случае: 11=2R*Sin(α/2) и 41=2R*Sin(β/2). Разделим первое уравнение на второе. 11/41=Sin(α/2)/Sin(β/2). Но β/2=60°-α/2. Тогда 11/41=Sin(α/2)/Sin(60-α/2) (1). Пусть теперь α/2=γ (для простоты написания). Далее сплошная тригонометрия. По формуле приведения: Sin(60°-γ)=Sin60°*Cosγ-Cos60°*Sinγ или Sin(60°-γ)=(√3/2)*Cosγ-(1/2)*Sinγ. Подставим это значение в уравнение (1): 11/41=Sin(γ)/[(√3/2)*Cosγ-(1/2)*Sinγ] или (11√3/2)*Cosγ-(11/2)*Sin(γ)=41Sin(γ) или (11√3)*Cosγ=93Sin(γ) (2). Мы знаем, что Cos²γ+Sin²(γ)=1. Тогда, возведя уравнение (2) в квадрат, получим: 363*(1-Sin²(γ))=8649*Sin²(γ). Отсюда Sin²(γ)=363/9012≈0,04, а Sin(γ)=0,2. Помня, что мы приняли α/2=γ, имеем: 11=2R*Sin(γ) или R=11/2*0,2=27,5. ответ: R=27,5.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
в четырехугольнике АВСD диагонали АС и BD пересекаются в точке О. ВС = 2, СD = 4, угол bac равен bdc =40°. угол cad = 2bac. диагональ АС является биссектрисой ВСD. Найдите площадь треугольника COD
Значит градусная мера дуги АВ плюс градусная мера дуги СD равна 120°.
Следовательно, сумма центральных углов <AОВ+<CОD=120°, а 0,5<AOB+0,5<COD=60°.
Пусть <AOB=α, a <COD=β тогда α/2+β/2=60°.
Длина хорды равна L=2R*Sin(α/2), где α - центральный угол, опирающийся на дугу, стягиваемую хордой.
В нашем случае:
11=2R*Sin(α/2) и 41=2R*Sin(β/2). Разделим первое уравнение на второе.
11/41=Sin(α/2)/Sin(β/2). Но β/2=60°-α/2. Тогда
11/41=Sin(α/2)/Sin(60-α/2) (1).
Пусть теперь α/2=γ (для простоты написания).
Далее сплошная тригонометрия.
По формуле приведения: Sin(60°-γ)=Sin60°*Cosγ-Cos60°*Sinγ или
Sin(60°-γ)=(√3/2)*Cosγ-(1/2)*Sinγ. Подставим это значение в уравнение (1):
11/41=Sin(γ)/[(√3/2)*Cosγ-(1/2)*Sinγ] или
(11√3/2)*Cosγ-(11/2)*Sin(γ)=41Sin(γ) или (11√3)*Cosγ=93Sin(γ) (2).
Мы знаем, что Cos²γ+Sin²(γ)=1.
Тогда, возведя уравнение (2) в квадрат, получим:
363*(1-Sin²(γ))=8649*Sin²(γ). Отсюда Sin²(γ)=363/9012≈0,04, а Sin(γ)=0,2.
Помня, что мы приняли α/2=γ, имеем: 11=2R*Sin(γ) или R=11/2*0,2=27,5.
ответ: R=27,5.