Подобные треугольники - треугольники, углы которых соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника. То есть и площади также должны быть пропорциональны.
Посчитаем площадь одного треугольника: 2+5+6=13 см. Разделим площадь большого треугольника (26 см) на площадь маленького (13 см), получится 2. Это означает, что стороны большого треугольника в 2 раза больше сторон маленького. Рассчитаем стороны большого треугольника: 2*2=4 см, 5*2=10 см, 6*2=12 см. Проверим правильно ли мы посчитали стороны: 4+10+12=26 см - периметр. Верно.
ответ: большая сторона подобного треугольника - 12 см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Задание по геометрии с задачей Дано: ST и SL - касательные TG ⊥ TS ∠TGL = 40° Нужно доказать: ∠TLG = 90° Нужно найти: ∠TSL
Подобные треугольники - треугольники, углы которых соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника. То есть и площади также должны быть пропорциональны.
Посчитаем площадь одного треугольника: 2+5+6=13 см. Разделим площадь большого треугольника (26 см) на площадь маленького (13 см), получится 2. Это означает, что стороны большого треугольника в 2 раза больше сторон маленького. Рассчитаем стороны большого треугольника: 2*2=4 см, 5*2=10 см, 6*2=12 см. Проверим правильно ли мы посчитали стороны: 4+10+12=26 см - периметр. Верно.
ответ: большая сторона подобного треугольника - 12 см.