coleslow12
?>

Один из углов равнобедренной трапеции равен 150°. Вычисли площадь трапеции, если её меньшее основание равно 10 см, а боковая сторона равна 303–√ см.ответ: площадь трапеции равна −−−−−−−√см2.

Геометрия

Ответы

foto5113161

145*sqr(3)

Объяснение:

Пусть трапеция ABCD. АВ=10*sqr(3) . BC=14. Проведем СЕ параллельно

боковой стороне АВ.  Тогда имеем 2 фигуры: параллелограмм ABCE и треугольник CED. Найдя площади каждой из фигур и сложив их найдем площадь трапеции. Sabce= 10sqr(3)*14*sin 30= 0.5*140*sqr(3)=70*sqr(3)

ECD= 150-30=120 град

Sced= (10*sqr(3))^2*sin ECD)/2= 3*100*sqr(3)/ 2/2 = 75*sqr(3)

Итого 70*sqr(3)+75*sqr(3)= 145*sqr(3)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Один из углов равнобедренной трапеции равен 150°. Вычисли площадь трапеции, если её меньшее основание равно 10 см, а боковая сторона равна 303–√ см.ответ: площадь трапеции равна −−−−−−−√см2.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ЕлизаветаВладимирович
ss2911
innesagrosheva22
donliolik
LesnovaVeronika1830
Lenok33lenok89
Елена Надыч524
puma802
chechina6646
eliteclassic308
Kolosove5465
Marina658
karinasy4ewa
aggeeva
suxoruchenkovm171