Приведем уравнение заданной прямой к общему виду:
5x + 2y + 4 = 0,
2y = -5x - 4 (делим на 2 обе части уравнения),
у = -2,5x - 2.
Уравнение прямой, параллельной данной, запишем, используя формулу: y - y0 = k(x - x0), где k - угловой коэффициент, x0,y0 - координаты точки, принадлежащей графику, в данном случае точки М. Так как k = -2,5, x0 = 2, y0 = 4, получим:
у – 4 = -2,5 * (х – 2),
у - 4 = -2,5х + 5,
у = -2,5х + 9.
ответ: уравнение параллельной прямой, проходящей через точку М(2; 4), имеет вид у = -2,5х + 9
Поделитесь своими знаниями, ответьте на вопрос:
Напишите уравнение прямой, проходящей через точку м(4; 6) и отсекающей от положительных полуосей координат треугольник с суммой катетов равной 20.
ответ:Трапеция равнобедренная,а это значит,что боковые стороны трапеции равны между собой,и углы при каждом из оснований тоже равны между собой,при меньшем основании по 120 градусов каждый,а при бОльшем
180-120=60 градусов каждый
Из тупых углов трапеции(а они находятся при малом основании) на бОльшее основание опускаем две высоты,и отсекаем от трапеции два прямоугольных треугольника,которые равны между собой по 2 признаку равенства прямоугольных треугольников-по катету и прилежащему ему острому углу
Высота-это перпендикуляр и от бОльшего основания с двух сторон были отсечены отрезки(они же катеты прямоугольных треугольников),равные
(6-2):2=2 см
Катет,величиной 2 см лежит против угла 30 градусов
180-(90+60=30 градусов
и поэтому гипотенуза (она же-боковая сторона трапеции)в два раза больше этого катета
2•2=4 см
Периметр трапеции равен
Р=2+6+4•2=16 см
Объяснение: