Решение. На продолжениях отрезков AM и А\М\ отложим отрезки MD и Mi А, равные AM и АХМХ (рис. 100). ААМС = ABMD по двум сторонам и углу между ними (AM = MD по построению; ВМ = МС, так как AM — медиана; ZAMC = ZBMD, так как эти углы — вертикальные). Отсюда следует, что BD = АС.
Аналогично, из равенства треугольников А\М\С\ и B\M\D\ следует, что B\D\ = А\С\, а так как АС = А\С\ (по условию), то BD = = BXDX.
AABD = AA\B\Di по трем сторонам (АВ = АХВХ; BD = BXDX\ AD = AXDX, так как AD = 2AM, A\D\ = 2A\M\ и AM = AXMX). Отсюда следует, что медианы ВМ и В\М\ в этих треугольниках равны . Поэтому ВС = 2ВМ = 2В\М\ = В\С\ и ААВС = АА\В\С\ по трем сторонам.
для вписанной окружности:
центр ---пересечение биссектрис углов треугольника
т.к. одна из биссектрис (проведенная к основанию (а)) ---медиана и высота, можно записать по определению тангенса: r / (a/2) = tg(альфа/2)
r = (a/2) * tg(альфа/2)
для описанной окружности: R = a / (2sin(180-2альфа)) = a / (2sin(2альфа))
r/R = a * tg(альфа/2) * 2sin(2альфа) / (2*a) = sin(2альфа)*tg(альфа/2)
можно еще немного сократить...
sin(2a) = 2sin(a)*cos(a) = 4sin(a/2)*cos(a/2)*cos(a)
r/R = 4cos(a)*(sin(a/2))^2 (здесь а---угол альфа)
Поделитесь своими знаниями, ответьте на вопрос:
Образующая конуса равна 8 м и наклонена к плоскости основания под углом 60 градусов .найдите площадь боковой поверхности конуса.
ответ: 32пи
если образующая равна 8(это гипотенуза в прямоугольном треугольнике), то радиус (катет) равен половине гипотенузы = 4. а площадь боковой поверхности конуса равна пиrl(образующая) = 4*8*пи=32пи