Объяснение:
Нам дан равнобедренный треугольник. Мы знаем, что в равнобедренном треугольнике углы три основании равны т.е <A=<C которые мы обозначим за x.
Найдем эти два угла:
Мы знаем, что сумма всех углов треугольника равна 180°
Составим уравнение:
x+x+<B=180°. (<B=40° по условию)
2x+40=180
2x=180-40=140
x=70°
Мы нашли углы <A и <C, но нам нужно найти часть угла <A (см свой рисунок)
<XAC = 15
<XAB = *неизвестно* - обозначим за x
<A = 70° - это полный угол
Составим уравнение:
15+x=70
x=70-15=55°
=> <XAB=55°
В равнобедренной трапеции диагональ является биссектрисой острого угла . Основание трапеции относится к боковой стороне как 8:5 Периметр трапеции равен 69 см найти стороны трапеции.
Объяснение:
АВСД-трапеция, АВ=СД , АД:АВ=8:5 , Р=69 см.
Тк. ВС║АД , АС-секущая , то ∠САД=∠АСД как накрест лежащие .
Тогда ΔАВС-равнобедренный по признаку ⇒АВ=ВС= 5 частей.
Поэтому СД=5 частей. Т.к. АД:АВ=8:5 , то АД=
*АВ.
Пусть одна часть равна х см , тогда АВ=ВС=СД=5х , АД=
*5х=8х .
Р=АВ+ВС+СД+АД , 69=5х+5х+5х+8х , х= 3 см .
АВ=ВС=СД=15 см , АД= 8см
Поделитесь своими знаниями, ответьте на вопрос:
v1=1/3пr^2h=30;
v2=1/3п*1/3h*4r^2=4/9 v1=30*4/9=13 1/3