1.
AC = 8,5 - 4,6 = 3,9 см.
AB - весь отрезок.
AC - часть отрезка.
BC - часть отрезка.
2.
угол CBD = углу ABC = 25°
угол ABD = CBD + ABC = 25° + 25° = 50°
3.
второй угол = 180° - первый угол = 180° - 114° = 66°
4.
P треугольника = 6 + 6 + 4 = 16 см.
5.
1) Рассмотрим треугольник АВС
По теореме о сумме углов треугольника найдем угол В.
Угол В = 180° - угол А - угол С = 180° - 80° - 40° = 60°
2) Угол ВМK = углу А (соответственные при МК || АС и секущей АВ)
Угол ВМK = 80°
3) Угол ВМN = углу MKN (т.к. MN - биссектриса угла ВМК)
Угол ВМN = углу MKN = 80° : 2 = 40°
4) Рассмотрим треугольник ВМN
По теореме о сумме углов треугольника найдем угол МNВ.
Угол MNB = 180° - угол В - угол ВМN = 180° - 60° - 40° = 80°
5) Сумма углов MNB и MNK равна 180°, т.к. они смешные.
Отсюда угол MNK = 180° - угол MNB = 180° - 80° = 100°
ответ: угол MNK = 100°
6.
Угол ДАС = углу ЕСА ( углы при основании ровнобедреного тркугольника АВС )
Угол ЕАС = углу ДСА ( Угол ДАС = углу ЕСА, а АЕ и СД - биссектрисы этих углов )
АС - общая сторона - из всего выше изложеного делаем вывод что треугольник АДС = треугольнику СЕА ( по стороне и двум прилегающим к ней углам )
7.
Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.
Пусть угол С=2х°, угол КАВ=5х°, угол В=90°, тогда 2х+90=5х
3х=90; х=30
угол С=30:2=60°; угол А=90-60=30°, т.к. сумма острых углов прямоугольного треугольника составляет 90°
Катет ВС лежит против угла 30°, следовательно, он равен половине гипотенузы АС
АС=2ВС=12 см.
(х – а)² + (у – b)² = R² – уравнение окружности, записанное в общем виде, где (а; b) – координаты центра окружности; R – радиус окружности. Из условия задачи известно, что уравнение окружности проходит через точку 8 на оси Ox, то есть через точку с координатами (8; 0), и через точку 4 на оси Oy, то есть через точку с координатами (0; 4). При этом центр находится на оси Oy, значит, точка (0; b) является центром окружности. Подставляя поочередно координаты этих точек в уравнение, получим систему двух уравнений с двумя неизвестными:
(8 – 0)² + (0 – b)² = R² и (0 – 0)² + (4 – b)² = R²;
(8 – 0)² + (0 – b)² = (0 – 0)² + (4 – b)²;
8² + b² = (4 – b)²;
b² – 8 ∙ b + 4² – 8² – b² = 0;
8 ∙ b = – 48;
b = – 6, тогда, R = 10, и уравнение окружности примет вид:
х² + (у + 6)² = 10².
ответ: х² + (у + 6)² = 10² – уравнение данной окружности.
Поделитесь своими знаниями, ответьте на вопрос:
Длина прямоугольника равна 13 см а одна из сторон 5 см найдите периметр прямоугольника
p=2a+2b
a=13
b=5
p=2*5+2*13=10+26=36 см.