△АВС
АВ = ВС
К ∈ АВ
Р ∈ ВС
АК = КР
∠РАС = 40°
∠BСА = 80°
Найти:а || b?
Решение:Так как АВ = ВС => △АВС - равнобедренный
∠BАС = ∠BСА = 80˚, по свойству равнобедренного треугольника.
Так как АК = КР => △АКР - равнобедренный
∠КРА = ∠КАР, по свойству равнобедренного треугольника
Итак, весь ∠BАС = 80°, а ∠РАС = 40° => ∠КАР = 80° - 40° = 40°
Так как ∠КРА = ∠КАР => КРА = 40°
Сумма углов треугольника равна 180°.
=> ∠АКР = 180° - (40° + 40°) = 100°
Если сумма односторонних углов равна 180°, то прямые параллельны.
∠АКР и ∠BАС - односторонние
Проверим, равняется ли их сумма 180°:
80° + 100° = 180°
=> а || b
ответ: да, а || b.По условию ∆ АВС – равнобедренный, АВ = ВС → СК : ВК = АМ : ВМ = 5 : 8
Значит, CK = АМ = 5х , ВК = ВМ = 8х
ВМ = ВК = 8х , АМ = АЕ = 5х , СК = СЕ = 5х – как отрезки касательных к окружности
AB + BC + AC = P abc
8x + 5x + 8x + 5x + 5x + 5x = 72
36x = 72
x = 2
Из этого следует, что ВМ = ВК = 16 , АМ = АЕ = 10 , СК = СЕ = 10 → АВ = ВС = 26 , АС = 20
Рассмотрим ∆ АВЕ (угол АЕВ = 90°):
По теореме Пифагора:
АВ² = АЕ² + ВЕ²
ВЕ² = 26² – 10² = 676 – 100 = 576
ВЕ = 24
S abc =( 1/2 ) × AC × BE = ( 1/2 ) × 20 × 24 = 240
ОТВЕТ: S abc = 240
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
1.в параллелограмме авсд разность углов а и в равна 40 градусов.найдите углы пар-ма. 2.основание трапеции авсд равны 15 см и 7см. найдите среднюю линию трапеции. 3.боковые стороны равнобедренного треугольника авс равны 5 см, а основание-6см. найдите медиану, проведённую к основанию треуг авс. 4.в окружность вписан прямоугольник со сторонами 5 см и 12 см. определите площадь круга(см^2 5.дан ромб с диагоналями ас=6см и вд=4см. найдите площадь ромба(см^2)