Каналы передачи данных ненадежны (шумы, наводки и т.д.), да и само оборудование обработки информации работает со сбоями. По этой причине важную роль приобретают механизмы детектирования ошибок. Ведь если ошибка обнаружена, можно осуществить повторную передачу данных и решить проблему. Если исходный код по своей длине равен полученному коду, обнаружить ошибку передачи не предоставляется возможным. Можно, конечно, передать код дважды и сравнить, но это уже двойная избыточность обнаружения ошибок является контроль по четности. Обычно контролируется передача блока данных ( М бит). Этому блоку ставится в соответствие кодовое слово длиной N бит, причем N>M. Избыточность кода характеризуется величиной 1-M/N. Вероятность обнаружения ошибки определяется отношением M/N (чем меньше это отношение, тем выше вероятность обнаружения ошибки, но и выше избыточность).
При передаче информации она кодируется таким образом, чтобы с одной стороны характеризовать ее минимальным числом символов, а с другой – минимизировать вероятность ошибки при декодировании получателем. Для выбора типа кодирования важную роль играет так называемое расстояние Хэмминга.
Пусть А и Б — две двоичные кодовые последовательности равной длины. Расстояние Хэмминга между двумя этими кодовыми последовательностями равно числу символов, которыми они отличаются. Например, расстояние Хэмминга между кодами 00111 и 10101 равно 2.
Можно показать, что для детектирования ошибок в n битах схема кодирования требует применения кодовых слов с расстоянием Хэмминга не менее N + 1. Можно также показать, что для исправления ошибок в N битах необходима схема кодирования с расстоянием Хэмминга между кодами не менее 2N + 1. Таким образом, конструируя код, мы пытаемся обеспечить расстояние Хэмминга между возможными кодовыми последовательностями большее, чем оно может возникнуть из-за ошибок.
Широко рас коды с одиночным битом четности. В этих кодах к каждым М бит добавляется 1 бит, значение которого определяется четностью (или нечетностью) суммы этих М бит. Так, например, для двухбитовых кодов 00, 01, 10, 11 кодами с контролем четности будут 000, 011, 101 и 110. Если в процессе передачи один бит будет передан неверно, четность кода из М+1 бита изменится.
Предположим, что частота ошибок ( BER – Bit Error Rate) равна р = 10-4. В этом случае вероятность передачи 8 бит с ошибкой составит 1 – (1 – p)8 = 7,9 х 10-4. Добавление бита четности позволяет детектировать любую ошибку в одном из переданных битах. Здесь вероятность ошибки в одном из 9 битов равна 9p(1 – p)8. Вероятность же реализации необнаруженной ошибки составит 1 – (1 – p)9 – 9p(1 – p)8 = 3,6 x 10-7. Таким образом, добавление бита четности уменьшает вероятность необнаруженной ошибки почти в 1000 раз. Использование одного бита четности типично для асинхронного метода передачи. В синхронных каналах чаще используется вычисление и передача битов четности как для строк, так и для столбцов передаваемого массива данных. Такая схема позволяет не только регистрировать, но и исправлять ошибки в одном из битов переданного блока.
Контроль по четности достаточно эффективен для выявления одиночных и множественных ошибок в условиях, когда они являются независимыми. При возникновении ошибок в кластерах бит метод контроля четности неэффективен, и тогда предпочтительнее метод вычисления циклических сумм ( CRC — Cyclic Redundancy Check). В этом методе передаваемый кадр делится на специально подобранный образующий полином. Дополнение остатка от деления и является контрольной суммой.
В Ethernet вычисление CRC производится аппаратно. На рис. 4.1 показан пример реализации аппаратного расчета CRC для образующего полинома R(x) = 1 + x2 + x3 + x5 + x7. В этой схеме входной код приходит слева.
ответ A:
i = 0
n = int(input("Введите число: "))
while n != 0:
if n % 3 == 0:
i += 1
n = int(input("Введите число: "))
print("ответ: {}".format(i))
ответ Б:
i = 0
n = int(input("Введите число: "))
while n != 0:
if (n % 10 == 3) and (n < 100 and n > 9):
i += 1
n = int(input("Введите число: "))
print("ответ: {}".format(i))
ответ C:
i = 0
n = int(input("Введите число: "))
max = n
while n != 0:
if n > max:
max = n
n = int(input("Введите число: "))
print("ответ: {}".format(max))
Поделитесь своими знаниями, ответьте на вопрос:
Суммативное оценивание за раздел «Представление информации» ФамилияКласс Дата Цель обучения5.2.1.1 приводить примеры разных видов информации и представлять информацию в разных формах 5.2.1.2 – приводить примеры каналов связи, источников и приемников информации 5.2.1.3 – кодировать и декодировать текстовую информацию.5.2.1.4 – пояснять, что вся информация для компьютера представляется в двоичном видеВремя выполнения 20 минутЗаданияРассмотрите пример и укажите вид информации.Виды информацииПример6.07.1923353, 6123/2 бРассмотрите и заполните таблицу. Прочитайте примеры, определите источник и приемник информации.ПримерИсточникПриемник Ученик изучает картины в музееУченик получил sms-сообщение от одноклассника/2 бУкажите соответствия./3 бИспользуя таблицу кодирования ASCII, закодируйте слово KLASS, в двоичном кодеKLASS/ ДескрипторКритерий№Дескриптор оцениваниязаданияОбучающийсяОпределяет вид информации по форме.1Определяет первый видинформации;1определяет второй видинформации;1Определяет канал связи, источник и приемник информации2указывает приемник информации;1указывает источник информации;1Устанавливает соответствие шифровании информации3указывает шифрование информации1указывает кодирование информации1указывает декодирование информации1Представляет информацию в кодированном виде4кодирует слово KLASS1 Всего 8 сор
1) Числовая
Графическая
2) Источник - картина
Приемник - ученик
Источник - одноклассник
приемник - ученик
3) шифр - 3
кодирование - 1
декодирование - 2
4) K - 01001011
L - 01001100
A - 01000001
S - 01010011
S - 01010011