Вычислите:
1)0,024 ∙ 4,5=0,108 3) 2,86 : 100=0,0286 5) 0,48 : 0,8=0,6
2)29,41 ∙ 1 000=29 410 4) 4 : 16=0,25 6) 9,1 : 0,07=130
(4-2,6) х 4,3 + 1,08 :1,2 -
1) 4 - 2, 6 = 1,4
2) 1,4 * 4,3 = 6, 02
3) 1,08 :1,2 = 0,9
4) 6, 02 + 0,9 = 6,92
2,4 * (х + 0,98) = 4,08
х + 0,98 = 4,08 : 2,4
х + 0,98 = 1,7
х = 1,7 - 0,98
х = 0,72
ответ: 0,72
1)19,8 - 1,7 = 18,1 - скорость лодки против течения
2)19,8 + 1,7 = 21,5 - скорость лодки по течению
3)21,5 * 1,4 = 30,1 - км по течению
4)18,1 * 2,2 = 39,82 - км против течения
5)30,1 + 39,82 = 69,92 -всего
ответ: За все время движения лодка преодолела 69,92 км
Пусть х - искомая десятичная дробь. Чтобы перенести запятую вправо на одну цифру, нужно число умножить на 10, получим число: 10*х.
После того, как запятую в десятичной дроби перенесли вправо, число увеличилось на 14,31. Значит, стало равным х+14,31.
Составим и решим уравнение:
10*х=х+14,31 (перенесём неизвестные в левую часть уравнения)
10х-х=14,31
9х=14,31
х=14,31:9
x=1,59
Прямые АР и B1D - скрещивающиеся, так как лежат в разных плоскостях и не пересекаются.
Цитаты: "Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой. Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся".
Построение:
Проведем прямую КL через точку D параллельно АР.
В точках пересечения этой прямой с продолжениями ребер ВА и ВС получим точки L и K соответственно. Соединив точки К, В1 и L, получим сечение КВ1L, параллельное прямой АР. Таким образом, искомое расстояние - это расстояние от прямой АР до плоскости КВ1L, а искомый угол - угол KDB1.
Проведем DO⊥РA до пересечения с ребром АВ а точке М.
Из точки М восстановим перпендикуляр МТ до пересечения с линией
сечения ВL. Тогда плоскость DTM перпендикулярна плоскости основания и плоскости сечения, а перпендикуляр ОН в прямоугольном треугольнике DQO - искомое расстояние между прямыми B1D и АР.
а) По условию:
Из треугольников АРВ, DCB и DBB1 по Пифагору:
AP=a√5, DB=2a√2, DB1=2a√3.
Из подобия треугольников NPB и NAD:
BN/ND=PN/NA=PB/DA=1/2.
DN=(2/3)*DB=4a√2/3.
AN=(2/3)AP=2a√5/3.
Площадь треугольника ADN:
Sadn=(1/2)*DN*DA*Sin45. Или Sadn=4a²/3.
Sadn=(1/2)*AN*DO, отсюда DO=2S/AN=4a/√5.
OA=√(DA²-DO²)=√(4a²-16a²/5)=√[(20a²-16a²)/5]=2a/√5.
ΔDAO~ΔAOM, так как <OAM=<AMO (соответтвенные стороны взаимно перпендикулярны: АМ⊥AD и MO⊥AO). Тогда
AM/DA=AO/DO, AM=DA*AO/DO=a, и АМ=МВ=а => DM=AP=a√5.
DK(KL)║AP по построению.
Треугольник PBN подобен ΔKBD, а ΔBNA подобен ΔDBL и
BP/BK=BN/BD=1/3.
BK=3a. BL=6a. AL=4a. LM=5a.
ΔLMT подобен ΔLBB1.
MT/BB1=LM/LB, MT=LM*BB1/LB.
MT=5a*2a/6a=5a/3.
DM/DO=MT/OQ.
OQ=MT*DO/DM=(5a/3)*(4a/√5)/a√5=4a/3.
DQ=√(DO²+OQ²)=√(16a²/5+16a²/9)=4a√14/(3√5).
ОН=DO*OQ/DQ или ОН=(4a/√5)*(4a/3)/[4a√14/(3√5)]=4a/√14=2a√14/7.
ответ: расстояние равно 2a√14/7.
б) Угол KDB1 - искомый угол между прямыми B1D и АР.
KB=3a. KB1=√(KB²+BB1²)=√(9a²+4a²)=a√13.
DB1=2a√3. KD=√(KC²+DC²)=√(a²+4a²)=a√5.
По теореме косинусов:
Cosα=(KD²+DB1²-KB1²)/(2*KD*DB1).
Cosα=(5a²+12a²-13a²)/(2*a√5*2a√3)=1/√15.
ответ: угол α=arccos(1/√15). α ≈ 75°.
Координатный метод:
Поместим начало координат в вершину А.
Вектор АР{2a;a;0}, |AP|=√(4a²+a²+0)=a√5.
Вектор B1D{-2a;2a;-2a}, |В1D|=√(4a²+4a²+4a²)=a√12=2a√3.
cosα=(x1*x2+y1*y2+z1*z2)/[√(x1²+y1²+z1²)*√(x2²+y2²+z2²)]
cosα=(-4a²+2a²+0)/(a√5*2a√3]=-2a²/2a²√15= -1/√15.
ответ: α=arccos(1/√15). α ≈ 75°.
Имеем точки А и D и направляющие вектора прямых B1D и АР:
А(0;0;0); n1{2a;a;0} (1) и D(0;2a;0); n2{-2a;2a;-2a}.
Есть формула нахождения расстояния между скрещивающимися прямыми:
d(a;b)=|(n1*n2*M1M2)|/|n1*n2| где произведения - это произведения векторов, а М1 и М2 - произвольные точки этих прямых - в нашем случае точки А и D.
Находим смешанное произведение векторов:
(n1*n2*M1M2)=|2a -2a 0|
|a 2a 2a|
|0 -2a 0| = 2a(4a²)-a*0-0*4a=8a³.
Произведение векторов n1 и n2:
n1*n2=| i j k |
| 2a a 0 |
|-2a 2a -2a| = i(-2a²-0)-j(-4a²)+k(4a²+2a²) = -2a²i+4a²j+6a²k.
Модуль |n1n2|=√(4a+16a+36a)=a²√56.
Тогда искомое расстояние равно 8a³/a²√56 =a*4/√14=2a√14/7.
Пошаговое объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Найдите значения параметра a, при каждом из которых уравнение (а-2)х^2-2ах+2а-3=0 имеет два различных положительных корня! поподробнее