ответ:ну что держи было не очень легко
Зная площадь сечения шара определим его радиус.
Sсеч = п * r2 = п * О1А2 = 243.
О1А = r = √243 см.
Из точки О, центра шара, проведем радиусы ОА и ОВ, перпендикулярно сечению.
Радиус ОВ в точке О1 делится пополам, тогда в прямоугольном треугольнике ОО1А катет ОА = R, а катет ОО1 = R / 2.
Тогда, по теореме Пифагора, AO12 = R2 – (R / 2)2 = 3 * R2 / 4 = 243.
R2 = 4 * 243 / 3 = 4 * 81 = 324.
R = 18 cм.
ответ: Радиус шара равен 18 см.
Через точку, расположенную на сфере, проведены два взаимно перпендикулярных сечения, площади которых равны 11π см и 14π см. Найдите объём шара и площадь сферы.
Логарифмический ноль. Элементарное свойство, которое нужно обязательно помнить. Какое бы ни было основание логарифма, если в аргументе стоит 1, то логарифм всегда равен 0.
Логарифмическая единица. Еще одно простое свойство: если аргумент и основание логарифма одинаковы, то значение логарифма будет равно единице.
Основное логарифмическое тождество. Отличное свойство, превращающее четырехэтажное выражение в простейшую b. Суть этой формулы: основание a, возведенное в степень логарифма с основанием а, будет равно b.
Сумма логарифмов. При умножении логарифмируемых чисел, можно сделать из них сумму 2х логарифмов, у которых будут одинаковые основания. И так невычислимые логарифмы становятся простыми.
Логарифм частного. Здесь ситуация схожая с суммой логарифмов. При делении чисел мы получаем разность двух логарифмов с одинаковым основанием.
Вынесение показателя степени из логарифма. Тут действуют целых 3 правила. Все просто: если степень находится в основании или аргументе логарифма, то ее можно вынести за пределы логарифма, в соответствии с этими формулами
Формулы перехода к новому основанию. Они нужны для выражений с логарифмами, у которых разные основания. Такие формулы в основном используются при решении логарифмических неравенств и уравнений.
Пошаговое объяснение:
Поделитесь своими знаниями, ответьте на вопрос: