Лекция 15. Основные величины, изучаемые в начальной школе
1. Понятие величины.
2. Длина.
3. Масса и емкость.
4. Площадь.
5. Время.
6. Скорость.
7. Действия с именованными числами.
Понятие величины
В математике под величиной понимают такие свойства предметов, которые поддаются количественной оценке. Количественная оценка величины называется измерением. Процесс измерения предполагает сравнение данной величины с некоторой мерой, принятой за единицу при измерении величин этого рода.
К величинам относят длину, массу, время, емкость (объем), площадь и др.
Все эти величины и единицы их измерения изучаются в начальной школе. Результатом процесса измерения величины является определенное численное значение, показывающее — сколько раз выбранная мера «уложилась» в измеряемую величину.
В начальной школе рассматриваются только такие величины, результат измерения которых выражается целым положительным числом (натуральным числом). В связи с этим, процесс знакомства ребенка с величинами и их мерами рассматривается в методике как расширения представлений ребенка о роли и возможностях натуральных чисел. В процессе измерения различных величин ребенок упражняется не только в действиях измерения, но и получает новое представление о неизвестной ему ранее роли натурального числа. Число — это мера величины, и сама идея числа была в большой мере порождена необходимостью количественной оценки процесса измерения величин.
При знакомстве с величинами можно выделить некоторые общие этапы, характеризующиеся общностью предметных действий ребенка, направленных на освоение понятия «величина».
На 1-ом этапе выделяются и распознаются свойства и качества предметов, поддающихся сравнению.
Сравнивать без измерения можно длины (на глаз, приложением и наложением), массы (прикидкой на руке), емкости (на глаз), площади (на глаз и наложением), время (ориентируясь на субъективное ощущение длительности или какие-то внешние признаки этого процесса: времена года различаются по сезонным признакам в природе, время суток — по движению солнца и т. п.).
На этом этапе важно подвести ребенка к пониманию того, что есть качества предметов субъективные (кислое — сладкое) или объективные, но не позволяющие провести точную оценку (оттенки цвета), а есть качества, которые позволяют провести точную оценку разницы (на сколько больше — меньше).
На 2-ом этапе для сравнения величин используется промежуточная мерка. Данный этап очень важен для формирования представления о самой идее измерения посредством промежуточных мер. Мера может быть произвольно выбрана ребенком из окружающей действительности для емкости — стакан, для длины — кусочек шнурка, для площади - тетрадь и т. п. (Удава можно измерять и в Мартышках, и в Попугаях.)
До изобретения общепринятой системы мер человечество активно пользовалось естественными мерами — шаг, ладонь, локоть и т. п. От естественных мер измерения произошли дюйм, фут, аршин, сажень, пуд и т. д. Полезно побуждать ребенка пройти этот этап истории развития измерений, используя естественные меры своего тела как промежуточные.
Только после этого можно переходить к знакомству с общепринятыми стандартными мерами и измерительными приборами (линейка, весы, палетка и т. д.). Это будет уже 3-й этап работы над знакомством с величинами.
Знакомство со стандартными мерами величин в школе связывают с этапами изучения нумерации, поскольку большинство стандартных мер ориентировано на десятичную систему счисления: 1 м = 100 см, 1 кг = 1000 г и т. п. Таким образом, деятельность измерения в школе очень быстро сменяется деятельностью преобразования численных значений результатов измерения. Школьник практически не занимается непосредственно измерениями и работой с величинами, он выполняет арифметические действия с заданными ему условиями задания или задачи численными значениями величин (складывает, вычитает, умножает, делит), а также занимается так называемым переводом значений величины, выраженной в одних наименованиях, в другие (переводит метры в сантиметры, тонны в центнеры и т. п.). Такая деятельность фактически формализует процесс работы с величинами на уровне численных преобразований. Для успешности этой деятельности нужно хорошо знать наизусть все таблицы соотношений величин и хорошо владеть приемами вычислений. Для многих школьников эта тема является трудной только по причине необходимости знать наизусть большие объемы численных соотношений мер величин.
Пошаговое объяснение:
ответ: x = 47/52
Обьяснение :
В поле 'Уравнение' можно делать следующие операции:
Правила ввода выражений и функций
Выражения могут состоять из функций (обозначения даны в алфавитном порядке):
absolute(x)
Абсолютное значение x
(модуль x или |x|)
arccos(x)
Функция - арккосинус от x
arccosh(x)
Арккосинус гиперболический от x
arcsin(x)
Арксинус от x
arcsinh(x)
Арксинус гиперболический от x
arctg(x)
Функция - арктангенс от x
arctgh(x)
Арктангенс гиперболический от x
exp(x)
Функция - экспонента от x (что и e^x)
log(x) or ln(x)
Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
sin(x)
Функция - Синус от x
cos(x)
Функция - Косинус от x
sinh(x)
Функция - Синус гиперболический от x
cosh(x)
Функция - Косинус гиперболический от x
sqrt(x)
Функция - квадратный корень из x
sqr(x) или x^2
Функция - Квадрат x
ctg(x)
Функция - Котангенс от x
arcctg(x)
Функция - Арккотангенс от x
arcctgh(x)
Функция - Гиперболический арккотангенс от x
tg(x)
Функция - Тангенс от x
tgh(x)
Функция - Тангенс гиперболический от x
cbrt(x)
Функция - кубический корень из x
gamma(x)
Гамма-функция
LambertW(x)
Функция Ламберта
x! или factorial(x)
Факториал от x
В выражениях можно применять следующие операции:
Действительные числа
вводить в виде 7.5, не 7,5
2*x
- умножение
3/x
- деление
x^3
- возведение в степень
x + 7
- сложение
x - 6
- вычитание
15/7
- дробь
Другие функции:
asec(x)
Функция - арксеканс от x
acsc(x)
Функция - арккосеканс от x
sec(x)
Функция - секанс от x
csc(x)
Функция - косеканс от x
floor(x)
Функция - округление x в меньшую сторону (пример floor(4.5)==4.0)
ceiling(x)
Функция - округление x в большую сторону (пример ceiling(4.5)==5.0)
sign(x)
Функция - Знак x
erf(x)
Функция ошибок (или интеграл вероятности)
laplace(x)
Функция Лапласа
asech(x)
Функция - гиперболический арксеканс от x
csch(x)
Функция - гиперболический косеканс от x
sech(x)
Функция - гиперболический секанс от x
acsch(x)
Функция - гиперболический арккосеканс от x
Постоянные:
pi
Число "Пи", которое примерно равно ~3.14159..
e
Число e - основание натурального логарифма, примерно равно ~2,7183..
i
Комплексная единица
oo
Символ бесконечности - знак для бесконечности
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите, применяя распределительное свойство умножения: 3 3/4*1 2/3+3 3/4*1/3, 1/9*1 5/6+1 1/6*1/9