Наклеим сначала этикетки на дискетки в произвольном порядке. Предположим, что у нас образовались дубли нескольких различных цветов. Возьмем по одной дискетке-дублю двух разных цветов и обменяем их этикетки. После этого каждая из дискеток перестанет быть дублем, так что общее число дублей уменьшится на 2. Далее будем повторять эту операцию до тех пор, пока дублей различных цветов не останется.2. Докажем нужный факт индукцией по числу дискеток (при этом можно даже не обращать внимание на соответствие цветов дискеток и этикеток!) . База индукции (одна дискетка) очевидна. Переход: если все k + 1 дискеток одноцветны, то и доказывать нечего. Если же есть дискетки разных цветов, то возьмем одну из них и наклеим на нее этикетку другого цвета, а для остальных k дискеток применим предположение индукции.
Пошаговое объяснение:
основания призмы всегда параллельны, поэтому тангенс угла между плоскостями (А₁В₁С₁) и (ACP), который нужно найти, равен тангенсу угла между плоскостями (АВС) и (ACP), который будем искать.
Угол плоскостями (АВС) и (ACP) -- это ∠BQP, где BQ -- высота Δ АВС.
Высота BQ равнобедненного Δ АВС является ещё и медианой, поэтому АQ = АС/2 = 16/2 = 8.
По теореме Пифагора: BQ = \sqrt{AB^2-AQ^2}= \sqrt{10^2-8^2}=6.
По условию BP = BB₁/2 = 24/2 = 12.
tg∠BQP = BP/BQ = 12/6 = 2
Расстоянием от точки B до плоскости (APC) будет перпендикуляр BR.
BR = BQ*sin\ \textless \ BQP = BQ* \sqrt{1-cos^2\ \textless \ BQP}= =BQ* \sqrt{1- \frac{1}{1+tg^2\ \textless \ BQP}}=BQ* \sqrt{\frac{tg^2\ \textless \ BQP}{1+tg^2\ \textless \ BQP}}=BQ* \frac{tg\ \textless \ BQP}{\sqrt{1+tg^2\ \textless \ BQP}}==6*\frac{2}{\sqrt{1+2^2}}=\frac{12}{\sqrt5}=\frac{12\sqrt5}{5}.
Поделитесь своими знаниями, ответьте на вопрос:
Решить уравнения (4.4+у)*13=91 17а-5.3=28.7где я поставила точку это запятая а умножение снежинка