lighturist
?>

Найдите количество целых решений неравенства log7(x-1)+log7(2)> 0

Математика

Ответы

Cannabikh
Смотри решение во вложении.
Найдите количество целых решений неравенства log7(x-1)+log7(2)> 0
vladimir686
ОДЗ: x не= (п/2)+п*n, n целое и
x не= п*m, m целое.
tg^4x + ctg^4x = tg^4x + ctg^4x + 2 - 2 = (tg^4x + ctg^4x + 2*tg^2x*ctg^2x) -2= (tg^2x + ctg^2x)^2 -2 = (tg^2x + ctg^2x + 2 - 2)^2 -2 = 
= ( (tgx+ctgx)^2 - 2)^2 -2;
положим (tgx+ctgx)^2 = t,
тогда
tg^4x + ctg^4x = ( t -2)^2 -2;
и
9*[ (t-2)^2 - 2] = 15*t + 2;
9*( t^2 - 4t + 4 - 2 ) = 15*t + 2;
9*t^2 - 36*t + 18 = 15t +2;
9*t^2 - (36+15)*t + 16 = 0;
9t^2 - 51t + 16 = 0;
D = 51^2 - 4*9*16 = 2601 - 576 = 2025 = 45^2;
t1 = (51-45)/18 = 6/18 = 1/3;
t2 = (51+45)/18 = 96/18 = 48/9 = 16/3.
1). (tgx + ctgx)^2 = 1/3;
tg^2 + (1/tgx)^2 + 2 = 1/3;
tg^2 + (1/tgx)^2 + 5/3 = 0;
3*tg^4(x) + 3 + 5*tg^2(x) = 0;
3*tg^4(x) + 5*tg^2(x) + 3 = 0; положим z=tg^2(x),
3*z^2 + 5z + 3 = 0;
D = 25 - 4*3*3 = 25 - 36<0; решений нет.
2) (tgx + ctgx)^2 = 16/3;
tg^2x + (1/tg^2x) + 2 = 16/3;
tg^2x + (1/tg^2x) + [ (6 - 16)/3] = 0;
tg^2x + (1/tg^2x) - (10/3) = 0;
3*tg^4x + 3 - 10*tg^2 = 0; положим tg^2x = z;
3z^2 - 10z + 3 = 0;
D = 100 - 4*3*3 = 10 - 36 = 64 = 8^2;
z1 = (10-8)/6 = 2/6 = 1/3;
z2 = (10+8)/6 = 18/6 = 3.
2.1) tg^2x = 1/3;
tgx = 1/(sqrt(3)) или tg(x) = -1/sqrt(3).
x1 = 
2.2) tg^2x = 3;
tgx = sqrt(3) или tg(x) = -sqrt(3).
От нуля до 2п, это один оборот вокруг единичной окружности, посмотри прикрепленный рисунок на нем выделены решения, а также линия тангенсов. По рисунку видно, что решений 8.
Решить уравнение 9(tg^4x+ctg^4x)=15(tgx+ctgx)^2+2. в ответ записать количество корней в промежутке [
ddavydov1116
Но если охота по умничать то... .
1)
2*2=5
Док-во:
то есть 4=5
25 - 45 = 16 - 36
Далее прибавим (9/2)^2 ко обеим частям ур-ия:
25 - 45 + (9/2)^2 = 16 - 36 + (9/2)^2
5^2 - (2*5*9)/2 + (9/2)^2 = 4^2 - (2*4*9)/2 + (9/2)^2
(5-9/2)^2 = (4-9/2)^2, обе части положительны, можно извлечь квадратный корень
5 - 9/2 = 4 - 9/2
Далее прибавим 9/2 ко обеим частям ур-ия:
5 = 4 что и требовалось доказать
Следовательно 2*2 = 5
2+2=5
Доказательство:
Пyсть 2+2=5.
2*1 + 2*1 = 5*1
Распишем 1, как частное pавных чисел:
1 = (5-5)/(5-5)
Тогда:
2*(5-5)/(5-5) + 2*(5-5)/(5-5) = 5*(5-5)/(5-5)
Умножим левyю и пpавyю части на (5-5), тогда:
2*(5-5) + 2*(5-5) = 5*(5-5)
Отсюда:
0 + 0 = 0

2)2+2=5
Домножим обе части уравнения на ноль.. . Абсурд? Да, как и вопрос!
0=0 - верно.

3)
Придумываете свою систему счисления.. .
Например последовательность символов [1,2,5]
Теперь в своей системе счисления будет
0 - 1
1 - 2
2 - 5
3 - 21
4 - 22
5 - 25
6 - 51

В этой системе счисления 2+2=5

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите количество целых решений неравенства log7(x-1)+log7(2)> 0
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Матфеопуло1006
Taniagrachev
Vladimirovna-Ignatenko1890
olimov9
oleonov
Vladimirovna Dmitrieva
ver2bit
struev2003260
shabaev19542355
Сергеевич1907
Bogdanov
fialkaflowers77
allo01
asskokov
olgavlad199