Предположим, что . Тогда и
. Проверим последнее утверждение.
Данное произведение — это произведение трёх последовательных чисел, значит, один из множителей обязательно делится на 3. Так как p простое и больше 3, p-1 и p+1 чётны. Докажем, что произведение p-1 = 2k и p+1 = 2k+2 (k ∈ N) делится на 8:
. Оно, очевидно, делится на 4. Также оно делится ещё на 2, так как одно из чисел k и k+1 обязательно чётное.
.
Однако из этого не обязательно следует, что и . Но p > 3 и p — простое, значит, p не содержит множителей числа 24, то есть на 24 может делиться только
, что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Среди 10 человек, подозреваемых в преступлении, двое виновных и восемь невиновных. экстрасенсу предъявляют подозреваемых по трое. если среди троих есть преступник, экстрасенс указывает на него, если там два преступника - на одного из них, а если преступник нет - на любого из троих. как за 4 таких сеанса найти хотя бы одного преступника?