Пусть сумма кредита равна S, а годовые составляют а %. Тогда 31 декабря каждого года оставшаяся сумма долга умножается на коэффициент: b = 1 + 0,01a.
После первой выплаты сумма долга составит:
S1 = Sb − X.
После второй выплаты сумма долга составит:
S2 = S1b − X = (Sb − X)b − X = Sb² − (1 + b)X.
После третьей выплаты сумма оставшегося долга равна:
S3 = Sb³ - (1-b+b²)X = Sb³ -
· X
После четвертой выплаты сумма оставшегося долга равна:
S4 =
- (1 + b +b² + b³)X =
-
· X
По условию четырьмя выплатами Алексей должен погасить кредит полностью, поэтому
-
· X = 0.
Потом выражаешь из этого выражения X и при S = 6902000 и а = 12,5, получаем: b = 1,125 получается:
X =
рублей
Даны точки P(-1,2,1); Q(3 ,-4 , 2) и плоскость 2x + 4y - 3z + 5=0.
Находим координаты вектора m, проходящего через точки P и Q.
m = (3-(-1)=4; -4-2=-6; 2-1=1) = (4; -6; 1).
Второй вектор - это нормальный вектор заданной плоскости. Он будет лежать в искомой плоскости. Его координаты берём из уравнения:
n = (2; 4; -3).
Теперь берём точку P(-1,2,1) и 2 вектора, которые будут лежать в искомой плоскости: m = (4; -6; 1) и n = (2; 4; -3).
Плоскость, проходящая через точку М0(х0;у0;z0) и параллельная данным (непараллельным между собой) прямым K1 и K2 (или векторам a1 и а2), представляется уравнением:
x-x0 y-y0 z-z0
nx ny nz
mx my mz = 0.
Подставляем данные:
x+1 y-2 z-1
2 4 -3
4 -6 1 = 0.
Решив эту матрицу, получаем -14x - 14y - 14z + 42 = 0.
Сократив на -14, получаем уравнение искомой плоскости:
x + y + z - 3 = 0.
Поделитесь своими знаниями, ответьте на вопрос:
я только знаю первый ответ.