alexk13
?>

Сделай проверку в последнем примере 96-42=54

Математика

Ответы

Назаренко1075
тоесть 54+42=96
и 96-54=42
и тогда 96-42=54

Вот я и проверила
Goldglobe
Билет №1
Теоретическая часть.
1. Вопрос: Какая функция является линейной?
ответ: Линейной является функция вида: f=kx+b.
2. Вопрос: Как умножить степени с одинаковыми основаниями?
ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней.
Билет №2:
Теоретическая часть.
1. Вопрос: Что является графиком линейной функции? Как можно построить такой график?
ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой.
2. Вопрос: Как разделить степени с одинаковыми основаниями?
ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним.
Билет №3
Теоретическая часть.
1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат:
ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

Примеры.

1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.

Решение:

В точке пересечения графика функции с осью Ox y=0:

kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
В точке пересечения с осью Oy x=0:

y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
2. Вопрос: Как возвести степень в степень?
ответ: Чтобы возвести степень в степень нужно перемножить степени. Например:
( {x}^{2} ) ^{2}= {x}^{4}
P. s: Решать практическую часть не буду, т.к могу ошибиться...
orb-barmanager

Пусть сумма кредита равна S, а годовые составляют а %. Тогда 31 декабря каждого года оставшаяся сумма долга умножается на коэффициент: b = 1 + 0,01a.
После первой выплаты сумма долга составит:
S1 = Sb − X.
После второй выплаты сумма долга составит:
S2 = S1b − X = (Sb − X)b − X = Sb² − (1 + b)X.
После третьей выплаты сумма оставшегося долга равна: 
S3 = Sb³ - (1-b+b²)X = Sb³ -\frac{b^{3} - 1}{b - 1} · X
После четвертой выплаты сумма оставшегося долга равна:
S4 = Sb^{4} - (1 + b +b² + b³)X = Sb^{4}\frac{ b^{4 - 1} }{b - 1} · X
По условию четырьмя выплатами Алексей должен погасить кредит полностью, поэтому Sb^{4}\frac{ b^{4 - 1} }{b - 1} · X = 0.
Потом выражаешь из этого выражения X  и при S = 6902000 и а = 12,5, получаем: b = 1,125 получается: 
X = \frac{6902000 * 1,601806640625 * 0,125 }{0,601806640625} = 2296350 рублей

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сделай проверку в последнем примере 96-42=54
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Nertman45
vainshakov
cipfarm484
reception
silicon-films3375
dpolkovnikov
Sosovna Dmitrievich22
ekaterinkat
banketvoshod
Smolkovaya
mustaevdmitry397
Mydariamiro
sn009
saltikovaPavlenko
dmitriyb1