Дано :
Четырёхугольник ABCD - равнобедренная трапеция (AB║DC, AD = BC).
Окружность с центром О - вписанная в равнобедренную трапецию окружность.
ОМ - радиус окружности = 5 см.
AD = BC = 16 см.
Найти :
S(ABCD) = ?
Если в четырёхугольник можно вписать окружность, то суммы противоположных сторон равны.
Следовательно -
AD + BC = AB + DC.
Но так как -
AD = BC = 16 см.
Поэтому -
AD + BC = 16 см + 16 см = 32 см
AB + DC = 32 см.
Радиус вписанной в трапецию окружности равен половине высоты.
На чертёже НМ - высота ABCD, следовательно -
НМ = 2*ОМ
НМ = 2*5 см
НМ = 10 см.
Площадь трапеции равна произведению полусуммы оснований и высоты.
То есть -
Теперь в формулу подставляем известные нам численные значения и считаем -
ответ : 160 (ед²).
Поделитесь своими знаниями, ответьте на вопрос:
Раскройте скобки и найдите значения выражения -47, 4+(15, 9-27, , 1+15, 3)
2)-24.1+15.3=-8.8
3)-47.4+11.4=-36
4)-36-(-8.8)=-36+8.8=-27.2
ответ:-27.2