memmedovallahverdi0239
?>

Вкласс принесли альбом для труда для изо 18. раздали ученикам 20. сколько альбомов осталось

Математика

Ответы

miha23727
Было : 10 + 18 = 28
Осталось: 28 - 20 = 8.
ответ: осталось 8
Tipan77
1)10+18=28 ал. всего
2)28-20=8 ал.
ответ 8 альбомов осталось.
Серопян

а - длина прямоугольника
b - ширина прямоугольника
=================================================================
Р=24 см
S=32 см²
а - ? см
b - ? см
Решение:
P=2(a+b)              (1)

S=a\cdot b                        (2)


из формулы площади прямоугольника (2) выводим формулу нахождения ширины


b=S:a=\frac{S}{a}


подставляем в формулу периметра прямоугольника (1)


P=2(a+\frac{S}{a})
 
2(a+\frac{S}{a})=P

2a+\frac{2S}{a}=P

2a+\frac{2S}{a}-P=0 /·a

умножаем на а для того, чтобы избавиться от знаменателя

2a^{2}+2S-aP=0
 
2a^{2}-aP+2S=0
 
подставим в уравнение данные P и S
 
2a^{2}-24\cdota+2\cdot32=0
 
2a^{2}-24a+80=0
 
2(a^{2}-12a+32)=0
 
a^{2}-12a+32=0
 
Квадратное уравнение имеет вид:
 
 ax^{2}+bx+c=0
 
Считаем дискриминант:


D=b^{2}-4ac=(-12)^{2}-4\cdot1\cdot32=144-128=16

Дискриминант положительный


\sqrt{D}=4


Уравнение имеет два различных корня:
 
a_{1}=\frac{12+4}{2\cdot1}=\frac{16}{2}=8
 
a_{2}=\frac{12-4}{2\cdot1}=\frac{8}{2}=4
 
Следовательно, стороны равны 8см и 4см соответственно


ответ: 8см и 4см стороны прямоугольника.
Проверка:
Р=2(а+b)=2(8+4)=2·12=24 (см)
S=a·b=8·4=32 (м²)

arturo95

а - длина прямоугольника
b - ширина прямоугольника
=================================================================
Р=24 см
S=32 см²
а - ? см
b - ? см
Решение:
P=2(a+b)              (1)

S=a\cdot b                        (2)


из формулы площади прямоугольника (2) выводим формулу нахождения ширины


b=S:a=\frac{S}{a}


подставляем в формулу периметра прямоугольника (1)


P=2(a+\frac{S}{a})
 
2(a+\frac{S}{a})=P

2a+\frac{2S}{a}=P

2a+\frac{2S}{a}-P=0 /·a

умножаем на а для того, чтобы избавиться от знаменателя

2a^{2}+2S-aP=0
 
2a^{2}-aP+2S=0
 
подставим в уравнение данные P и S
 
2a^{2}-24\cdota+2\cdot32=0
 
2a^{2}-24a+80=0
 
2(a^{2}-12a+32)=0
 
a^{2}-12a+32=0
 
Квадратное уравнение имеет вид:
 
 ax^{2}+bx+c=0
 
Считаем дискриминант:


D=b^{2}-4ac=(-12)^{2}-4\cdot1\cdot32=144-128=16

Дискриминант положительный


\sqrt{D}=4


Уравнение имеет два различных корня:
 
a_{1}=\frac{12+4}{2\cdot1}=\frac{16}{2}=8
 
a_{2}=\frac{12-4}{2\cdot1}=\frac{8}{2}=4
 
Следовательно, стороны равны 8см и 4см соответственно


ответ: 8см и 4см стороны прямоугольника.
Проверка:
Р=2(а+b)=2(8+4)=2·12=24 (см)
S=a·b=8·4=32 (м²)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вкласс принесли альбом для труда для изо 18. раздали ученикам 20. сколько альбомов осталось
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ksoboleva
denblacky
elav20134518
nevori
Павел_Перелыгин
santechma
Yurevich-Vladimirovich
vodexshop2
Сергеевич1386
Yurevna_Kharkchinov1302
shutovaa3471
Орлова
Panda062000
vasiliyglukhov
nata27-73589