Построить сечение куба плоскостью, проходящей через точки A, C и M.
сечение куба
Задачи такого вида — самые простые из всех задач на построение сечений куба. Поскольку точки A и C лежат в одной плоскости (ABC), то через них можем провести прямую. Ее след — отрезок AC. Он невидим, поэтому изображаем AC штрихом. Аналогично соединяем точки M и C, лежащие в одной плоскости (CDD1), и точки A и M, которые лежат в одной плоскости (ADD1). Треугольник ACM — искомое сечение.
построить сечение куба плоскостью
2) Построить сечение куба плоскостью, проходящей через точки M, N, P.
Здесь только точки M и N лежат в одной плоскости (ADD1), поэтому проводим через них прямую и получаем след MN (невидимый). Поскольку противолежащие грани куба лежат в параллельных плоскостях, то секущая плоскость пересекает параллельные плоскости (ADD1) и (BCC1) по параллельным прямым. Одну из параллельных прямых мы уже построили — это MN.
сечение кубаЧерез точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS — след секущей плоскости в грани (BCC1).
Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый).
Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след — NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую.
Пятиугольник MNLPS — искомое сечение.
3) Построить сечение куба плоскостью, проходящей через точки M, N, P.
построить сечение куба плоскостью
Точки M и N лежат в одной плоскости (ВСС1), поэтому через них можно провести прямую. Получаем след MN (видимый). Плоскость (BCC1) параллельна плоскости (ADD1),поэтому через точку P, лежащую в (ADD1), проводим прямую, параллельную MN. Она пересекает ребро AD в точке E. Получили след PE (невидимый).
построение сечений
Больше нет точек, лежащей в одной плоскости, или прямой и точки в параллельных плоскостях. Поэтому надо продолжить одну из уже имеющихся прямых, чтобы получить дополнительную точку.
Если продолжать прямую MN, то, поскольку она лежит в плоскости (BCC1), нужно искать точку пересечения MN с одной из прямых этой плоскости. С CC1 и B1C1 точки пересечения уже есть — это M и N. Остаются прямые BC и BB1. Продолжим BC и MN до пересечения в точке K. Точка K лежит на прямой BC, значит, она принадлежит плоскости (ABC), поэтому через нее и точку E, лежащую в этой плоскости, можем провести прямую. Она пересекает ребро CD в точке H. EH -ее след (невидимый). Поскольку H и N лежат в одной плоскости (CDD1), через них можно провести прямую. Получаем след HN (невидимый).
Плоскости (ABC) и (A1B1C1) параллельны. В одной из них есть прямая EH, в другой — точка M. Можем провести через M прямую, параллельную EH. Получаем след MF (видимый). Проводим прямую через точки M и F.
Шестиугольник MNHEPF — искомое сечение.
построение сечения куба
Если бы мы продолжили прямую MN до пересечения с другой прямой плоскости (BCC1), с BB1, то получили бы точку G, принадлежащую плоскости (ABB1). А значит, через G и P можно провести прямую, след которой PF. Далее — проводим прямые через точки, лежащие в параллельных плоскостях, и приходим к тому же результату.
Работа с прямой PE дает то же сечение MNHEPF.
4) Построить сечение куба плоскостью, проходящей через точку M, N, P.
построить сечение кубаЗдесь можем провести прямую через точки M и N, лежащие в одной плоскости (A1B1C1). Ее след — MN (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.
сечение кубаПродолжим прямую MN. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и M. Еще две прямые этой плоскости — A1B1 и B1C1. Точка пересечения A1B1 и MN — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости ( ABB1), а значит, через нее и точку P, лежащую в этой же плоскости, можно провести прямую. Прямая PS пересекает ребро AA1 в точке E. PE — ее след (видимый). Через точки N и E, лежащие в одной плоскости (ADD1), можно провести прямую, след которой — NE (невидимый). В плоскости (ADD1) есть прямая NE, в параллельной ей плоскости (BCC1) — точка P. Через точку P можем провести прямую PL, параллельную NE. Она пересекает ребро CC1 в точке L. PL — след этой прямой (видимый). Точки M и L лежат в одной плоскости (CDD1), значит, через них можно провести прямую. Ее след — ML (невидимый). Пятиугольник MLPEN — искомое сечение.
построить сечение кубаМожно было продолжать прямую NM в обе стороны и искать ее точки пересечения не только с прямой A1B1, но и с прямой B1C1, также лежащей в плоскости (A1B1C1). В этом случае через точку P проводим сразу две прямые: одну — в плоскости (ABB1) через точки P и S, а вторую — в плоскости (BCC1), через точки P и R. После чего остается соединить лежащие в одной плоскости точки: M c L, E — с N.
Пошаговое объяснение:
f(x) = (х + 2)(х - 3)(х - 5)
Областью определения этой функции является множество всех чисел. Нулями функции служат числа -2, 3, 5. Они разбивают область определения функции на промежутки
(
−
∞
;
−
2
)
,
(
−
2
;
3
)
,
(
3
;
5
)
и
(
5
;
+
∞
)
Выясним, каковы знаки этой функции в каждом из указанных промежутков.
Выражение (х + 2)(х - 3)(х - 5) представляет собой произведение трех множителей. Знак каждого из этих множителей в рассматриваемых промежутках указан в таблице:
(
−
∞
;
−
2
)
(
−
2
;
3
)
(
3
;
5
)
(
5
;
+
∞
)
x+2 – + + +
x-3 – – + +
x-5 – – – +
Отсюда ясно, что:
если
x
∈
(
−
∞
;
−
2
)
, то f(x)<0;
если
x
∈
(
−
2
;
3
)
, то f(x)>0;
если
x
∈
(
3
;
5
)
, то f(x)<0;
если
x
∈
(
5
;
+
∞
)
, то f(x)>0.
Мы видим, что в каждом из промежутков
(
−
∞
;
−
2
)
,
(
−
2
;
3
)
,
(
3
;
5
)
,
(
5
;
+
∞
)
функция сохраняет знак, а при переходе через точки -2, 3 и 5 ее знак изменяется.
-2 3 5
Вообще пусть функция задана формулой
f(x) = (x-x1)(x-x2) ... (x-xn),
где x–переменная, а x1, x2, ..., xn – не равные друг другу числа. Числа x1, x2, ..., xn являются нулями функции. В каждом из промежутков, на которые область определения разбивается нулями функции, знак функции сохраняется, а при переходе через нуль ее знак изменяется.
Это свойство используется для решения неравенств вида
(x-x1)(x-x2) ... (x-xn) > 0,
(x-x1)(x-x2) ... (x-xn) < 0,
где x1, x2, ..., xn — не равные друг другу числа
Рассмотренный решения неравенств называют методом интервалов.
Приведем примеры решения неравенств методом интервалов.
Решить неравенство:
x
(
0
,
5
−
x
)
(
x
+
4
)
<
0
Очевидно, что нулями функции f(x) = x(0,5-x)(x+4) являются точки
x
=
0
,
x
=
1
2
,
x
=
−
4
Наносим на числовую ось нули функции и вычисляем знак на каждом промежутке:
-4 0 0,5
Выбираем те промежутки, на которых функция меньше нуля и записываем ответ.
x
∈
(
−
4
;
0
)
∪
(
0
,
5
;
+
∞
)
или
−
4
<
x
<
0
;
x
>
0
,
5
Решить неравенство:
x
+
2
x
−
1
≤
2
x
+
2
x
−
1
≤
2
⇒
x
+
2
−
2
(
x
−
1
)
x
−
1
≤
0
⇒
−
x
+
4
x
−
1
≤
0
Наносим на числовую ось нули и точки разрыва функции:
1 4
Выбираем те промежутки, на которых функция меньше или равна нулю и записываем ответ.
x
∈
(
−
∞
;
1
)
∪
[
4
;
+
∞
)
или
x
<
1
;
x
≥
4
Поделитесь своими знаниями, ответьте на вопрос:
Запиши число, состоящее из пятисот восьмидесяти девяти единиц первого класса.разложи эти число на сумму разрядных слагаемых.
589=5*100+8*10+9