Timurr007
?>

Найдите значение выражения: (1 17/25·2 1 1/7-2 4/7·1 2/5) ·2 7/9=

Математика

Ответы

gulnaradjhumabaeva123
(1 17/25 * 2 1/7 - 2 4/7 * 1 2/5) * 2 7/9 = 0
1) 1 17/25 * 2 1/7 = 42/25 * 15/7 = 6 * 3 / 5 * 1 = 18/5
2) 2 4/7 * 1 2/5 = 18/7 * 7/5 = 18/5
3) 18/5 - 18/5 = 0
4) 0 * 2 7/9 = 0
fucksyara
Sqrt{3} и 1/3 можно расписать как 3^1/3 и 3^-1 соответственно. Теперь мы сможем воспользоваться свойством сложения логарифмов с одинаковыми основаниями (loga(b)+loga(c)=loga(b*c)). Имеем: logsqrt{3}(81/sqrt{5}+sqrt{2})+log1/3(1/7+2sqrt{10})=log3^1/2(81/sqrt{5}+sqrt{2})+log3^-1(1/7+2sqrt{10}=2log3(...)-1log3(...)=log3(81/sqrt{5}+sqrt{2})^2+log3(1/7+2sqrt{10})^-1 (степень от основания пошла к числу) <=> log3((81/sqrt{5}+sqrt{2})^2 • (1/7+2sqrt{10})-1)=log3(6561*(7+2sqrt{10}/7+2sqrt{10}=log3(6561)=8 (3^8=6561); (sqrt{5}+sqrt{2})^2=5+2*sqrt{2}*sqrt{5}+2=5+2sqrt{10}+2=7+2sqrt{10}. ответ: 8. При решении использовались основные свойства логарифмов.
ribcage52
Преобразуем x^2 - 6x + y^2 - 6y + 14 = 0.
x^2 - 6x + 9 + y^2 - 6y + 9 = 4
(x-3)^2 + (y-3)^2 = 2^2 - окружность радиуса 2 с центром в (3;3)
Преобразуем x^2 - 2a(x+y) + y^2 + a^2 = 0.
x^2 - 2ax + a^2 + y^2 - 2ay + a^2 = a^2
(x-a)^2 + (y-a)^2 = a^2 - окружность радиуса a с центром в (a;a).
Видим, что центр второй окружности располагается на прямой y=x, там же, где и центр первой окружности. Следовательно, точка касания окружностей будет лежать именно на прямой y=x.
Найдем эти точки касания:
x=y,
(x-3)^2 + (y-3)^2 = 2^2
Отсюда
2*(x-3)^2 = 2^2
(x-3)^2=2
x=y=3+-√2.
Тогда для второй окружности должно выполняться условие:
Расстояние от центра второй окружности (a;a) до точки касания равно радиусу второй окружности.
1) Точка касания (3-√2;3-√2)
Длина вектора (a - (3-√2); a - (3-√2)) равна a. Это значит, что (a - (3-√2))^2+(a - (3-√2))^2=a^2,
2(a-(3-√2))^2=a^2,
(a√2-(3√2-2))^2-a^2=0,
(a(√2-1)-(3√2-2))(a(√2+1)-(3√2-2))=0
Отсюда
а) a(√2-1)-(3√2-2)=0
a=(3√2-2)/(√2-1)=((3√2-2)(√2+1))/((√2-1)*(√2+1))=4+√2
б) a(√2+1)-(3√2-2)=0
a=(3√2-2)/(√2+1)=((3√2-2)(√2-1))/((√2+1)(√2-1))=8-5√2
2) Точка касания (3+√2;3+√2)
Длина вектора (a - (3+√2); a - (3+√2)) равна a. Это значит, что (a - (3+√2))^2+(a - (3+√2))^2=a^2,
2((a - (3+√2))^2)-a^2=0,
(a√2-(3√2+2))^2-a^2=0,
(a(√2-1)-(3√2+2))(a(√2+1)-(3√2+2))=0.
Отсюда
а) a(√2-1)-(3√2+2)=0
a=(3√2+2)/(√2-1)=((3√2+2)(√2+1))/((√2-1)(√2+1))=8+5√2
б) a(√2+1)-(3√2+2)=0
a=(3√2+2)/(√2+1)=((3√2+2)(√2-1))/((√2-1)(√2+1))=4-√2
ответ: 4-√2, 4+√2, 8-5√2, 8+5√2.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите значение выражения: (1 17/25·2 1 1/7-2 4/7·1 2/5) ·2 7/9=
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kolesnikovaen
Бочкова_Елена203
vasenkova1981
zaseche99
ВладимировнаИП37
sadkofamily61
ykolkova76
kozak8824
Astrians
priexali
Styazhkin395
An-solomon
Olga1509
kareeva
info664