Квадрат АВСD и цилиндр расположены таким образом, что АВ – диаметр верхнего основания цилиндра, а СD лежит в плоскости нижнего основания и касается его окружности.
а) Докажите, что плоскость квадрата наклонена к плоскости основания цилиндра под углом 60°.
б) Найдите длину той части отрезка ВD, которая находится внутри цилиндра, если образующая цилиндра равна \sqrt 6.
Решение
Главное в этой задаче – хороший рисунок.
а) Пусть A_1 и B_1 - проекции точек А и В на нижнее основание цилиндра. Покажем, что угол между плоскостями ABC и A_1 B_1 C равен 60°.
Пусть М – точка касания окружности нижнего основания цилиндра и прямой DC.
A_1 B_1 \parallel CD,
Tочка М - середина CD.Очевидно, O_1 M\perp CD
Обозначим O_1 M=r;\ r=\frac {1}{2}A_1 B_1=\frac {1}{2} AB.
Тогда OM=AD=2r.
В треугольнике OO_1 M гипотенуза ОМ в 2 раза больше катета O_1 M .
Значит, ∠O_1 OM=30^{\circ}, ∠OMO_1=60^{\circ} . Угол ∠OMO_1 - это угол между плоскостями (ABC) и ( A_1 B_1 C) .
б) Пусть длина образующей цилиндра AA_1=\sqrt 6 ,
F – точка пересечения отрезка BD с поверхностью цилиндра, F_1 – проекция точки F на плоскость A_1 B_1C.
В пункте (а) мы нашли, что OM =2r. Тогда OO_1= AA_1=r\sqrt 3 - образующая цилиндра.
Поскольку AA_1=\sqrt 6, найдем r=\sqrt 2.
Теперь нам известны стороны квадрата. AD=BC=AB=2\sqrt 2.
Диагональ квадрата АВСD в \sqrt 2 раз больше его стороны, поэтому BD=2\sqrt 2\cdot \sqrt 2=4 .
Из ∆A_1 B_1 D :
B_1D=\sqrt{(2r)^2+r^2}=r\sqrt{5}=\sqrt{10},
\cos \angle A_1B_1D=\frac{2r}{r\sqrt{5}}=\frac{2}{\sqrt{5}};
\angle A_1F_1B_1=90^{\circ} (опирается на диаметр A_1B_1),
B_1F_1=A_1B_1\cdot \cos \angle A_1B_1D=2r\cdot \frac{2}{\sqrt{5}}=\frac{4r}{\sqrt{5}}=\frac{4\sqrt{2}}{\sqrt{5}};
Тогда
F_1D=B_1D-B_1F_1=\sqrt{10}-\frac{4\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{10}}{5};
\Delta BB_1D\sim \Delta FF_1D;
\frac{B_1D}{F_1D}=\frac{BD}{FD};\ FD=\frac{F_1D\cdot BD}{B_1D}=\frac{\sqrt{10}\cdot 4}{5\cdot \sqrt{10}}=\frac{4}{5};
BF=BD-FD=4-\frac{4}{5}=\frac{16}{5}.
ВF – это часть отрезка ВD, которая находится внутри цилиндра. Она равна \frac{16}{5}.
б) \frac{16}{5}
Поделиться страницей
Это полезно
© ЕГЭ-Студия
Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.
Поделитесь своими знаниями, ответьте на вопрос:
1.В железной руде содержится 45 % железа. Сколько тонн железа содержится в 380 т руды?2.За день вспахали 18 % поля. Какова площадь всего поля, если вспахали 1170 га?3. В роще 700 берез и 300 сосен. Сколько процентов всех деревьев составляют сосны
2. С циркуля постройте дугу с центром в точке А радиусом АВ таким образом, чтобы дуга пересекла прямую в двух точках. Зафиксируйте вторую точку С;
3. Постройте две окружности равного радиуса с центрами в точках пересечения прямой и дуги таким образом, чтобы эти окружности пересеклись в двух точках. Пусть это будут точки D и F.
4. Соедините точки пересечения окружностей, получим отрезок DF. Если вы всё сделали правильно, эти точки будут на одной прямой с точкой А.
Полученная прямая и есть искомый перпендикуляр к прямой а.
Доказательство: Точки В и С находятся на равном расстоянии от точки А по построению, Точки D и F находятся на равном удалении от отрезка В и С так же по построению. Точка А лежит на прямой, проходящей через точки D и F.