kseybar
?>

Решите неравенств 9(0, 5y+1)-3, 1(1-y)> 5, 9+7, 2y

Математика

Ответы

lazareva
Решение на фото!
______________________________
удачи))

Понравилось решение?Жми ЛУЧШИЙ!)
Решите неравенств 9(0,5y+1)-3,1(1-y)> 5,9+7,2y
lechocolat

Пошаговое объяснение:

р^2+2px-7x=2p+5

2px-7x=2p+5-p^2

x(2p-7)=2p+5-p^2

x=(2p+5-p^2)/(2p-7)

по условию корень должен быть больше или равен -3

(2p+5-p^2)/(2p-7) больше или равно -3

(2p+5-p^2+3(2p-7))/(2p-7) больше или равно 0

(2p+5-p^2+6p-21)/(2p-7) больше или равно 0

это выполнимо, когда числитель больше или равен 0 и знаменатель больше 0 или если числитель меньше или равен 0 и знаменатель меньше 0

-p^2+8p-16=0

D=64-64=0

1.                                                    или 2.

-(p-4)^2 больше или равно 0,             -(p-4)^2  меньше или равно 0,

2p-7 больше 0                                      2p-7 меньше 0

1.

-(p-4)^2 всегда меньше или равно 0,

значит нам подходит только p=4 , при этом 2p-7 больше 0, значит p=4 является решением

2.

-(p-4)^2 меньше или равно 0 - всегда

2p-7 меньше 0

2p меньше 7

p меньше 3,5

Таким образом, ответом будет промежуток от минус бесконечности до 3,5 (исключая конец) и ещё 4.

Подробнее - на -

АлександрАлина
Дана функция y= (x-3)²/(x² +9).

1) Найти область определения функции; 
Ограничений нет - х ∈ R (знаменатель не может быть равен нулю).
2) Исследовать функцию на непрерывность; 
Непрерывна, так как нет точек разрыва функции.
3) Определить, является ли данная функция четной, нечетной; 
f(-x) = ((-x)-3)²/((-x)² +9) = (x+3)²/(x² +9) ≠ f(-x) ≠ -f(-x).
 Функция не чётная и не нечётная.
4) Найти интервалы функции и точки её экстремума ; 
Находим производную функции.
y' = 6(x-3)(х+3)/(x² + 9)².
Приравняв её нулю (достаточно только числитель), имеем 2 корня:
х = 3 и х = -3.
Имеем 3 промежутка (-∞; -3), (-3; 3) и (3; ∞).
Находим знаки производной на этих промежутках.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x =      -4        -3              0             3                4
y' = 0,0672      0        -0,66667       0          0,0672.
Отсюда получаем:
Функция возрастает на промежутках  (-∞; -3), (3; +∞) и убывает на промежутке (-3; 3)
Экстремумов  два:
 - максимум в точке х = -3,
 - минимум в точке  х = 3.
5) Найти интервалы выпуклости и вогнутости и точки перегиба графика функции; 
Находим вторую производную.
y'' = -12х(x² - 27)/(x² + 9)³.
Приравняв нулю, имеем 3 точки перегиба:
х = 0, х = √27 = 3√3 и х = -3√3.
6) Найти асимптоты графика функции.
Асимптота есть одна горизонтальная у =1.
График функции, таблица точек для его построения приведены в приложении.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите неравенств 9(0, 5y+1)-3, 1(1-y)> 5, 9+7, 2y
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Vladimirovna-Ignatenko1890
annakuzina2023
vikabobkova2010
Svetlana290419
Irina_Chernyaev532
turaev-1098
mahalama7359
versalmoda2971
monenko
andreokiseleo69421
tatyana58
veniaminsem
djevgen
Yevgeniya Bessonov
IInessa44478