Elvira-Natalya
?>

Какая дробь выражает вероятность того, что при бросании игральной кости один раз выпадет число очков, кратное трём

Математика

Ответы

fmba18

1/3

Пошаговое объяснение:

Числа, кратные 3: 2, 6. Всего 2.

Всего 6 граней.

2/6 = 1/3

Tatyana Anton1475

ответ: 1) +∞; 2) 7/3; 3) -5/4; 4) 1/2; 5) e^(-4/3).

Пошаговое объяснение:

1) Подстановка x=∞ приводит к неопределённости ∞/∞. Сокращая числитель и знаменатель дроби на x⁶, получаем lim(x⇒∞) [x⁴+1/x⁴+1/x⁶]/[5+1/x³+2/x⁵]=(∞+0+0)/(5+0+0)=∞/5=∞. ответ: ∞.

2) Подстановка x=1 приводит к неопределённости 0/0. Так как 5*x²-3*x-2=5*(x-1)*(x+2/5), а x³-1=(x-1)*(x²+x+1), то числитель и знаменатель дроби можно сократить на x-1. Тогда данный предел перепишется в виде lim(x⇒1) [5*x+2]/[x²+x+1]=7/3. ответ: 7/3.

3) Подстановка x=1 приводит к неопределённости 0/0. Умножив числитель и знаменатель дроби на √(9-5*x)+2, получим lim(x⇒1) [5-5*x]/[(x-1)*√(9-5*x)+2]=-5*lim(x⇒1) [x-1]/[(x-1)*√(9-5*x)+2]=-5*lim(x⇒1) 1/[√(9-5*x)+2]=-5/(√4+2)=-5/4. ответ: -5/4.

4) Подстановка x=0 приводит к неопределённости 0/0, то есть при x⇒0 числитель и знаменатель представляют собой бесконечно малые величины. Из курса анализа известно, что величина предела не изменится, если входящие в выражение бесконечно малые величины заменить эквивалентными. В данном случае бесконечно малую e^[sin(2*x)]-1 заменим эквивалентной бесконечно малой 2*x, а бесконечно малую arctg(4*x) - эквивалентной бесконечно малой 4*x. Тогда искомый предел запишется в виде lim(x⇒0) [2*x]/[4*x]=1/2. ответ: 1/2.  

5) Подстановка x=∞ приводит к неопределённости (∞/∞)^∞. Разделив числитель дроби на знаменатель, получим выражение для предела в виде lim(x⇒∞) [1-2/(3*x+1)]^(2*x+8). Положим 2/(3*x-1)=-t, тогда x=-2/(3*t)-1/3, 2*x+8=-4/(3*t)+22/3 и при x⇒∞ t⇒0. Тогда данный предел запишется в виде lim(t⇒0) [(1+t)^(22/3)/[(1+t)^(4/(3*t))]=1/lim(t⇒0)[(1+t)^(1/t)]^4/3=1/e^(4/3)=e^(-4/3). ответ: e^(-4/3).

khadisovam9
Можно воспользоваться таким следствием из второго замечательного предел что 
 lim \ x->0 \ \frac{ln(1+x)}{x}=1lim x−>0 xln(1+x)​=1  
 Перейдем к нашему пределу 
 \begin{lgathered}x->2 \ \ (3x-5)^{\frac{2x}{x^2-4}} x->2 \ \ e^{\frac{ln(3x-5)*2x}{x^2-4}}end{lgathered}x−>2  (3x−5)x2−42x​x−>2  ex2−4ln(3x−5)∗2x​​  
сделаем теперь некую замену x-2=yx−2=y   , тогда y->0y−>0  предел  примет вид без основания 
    \begin{lgathered}y->0 \ \frac{ln(3y+1)*2(y+2)}{y^2-4y} y->0 \ \frac{ln(3y+1)*4}{3y(\frac{y}{3}+\frac{4}{3})}= y->0 \ \ 1*\frac{4}{\frac{4}{3}}=3\end{lgathered}y−>0 y2−4yln(3y+1)∗2(y+2)​y−>0 3y(3y​+34​)ln(3y+1)∗4​=y−>0  1∗34​4​=3​ 
 то  есть предел равен e^3e3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Какая дробь выражает вероятность того, что при бросании игральной кости один раз выпадет число очков, кратное трём
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

АнатольевичМиронова885
karpovaveronika196
Иванович621
NIKOLAEVNA
far-yuliya128
Nikishina
astahova
mbrilliantova
igortychinin
Dmitrievna405
Voronina747
romolga3580
gulyaizmailova
Nonstop788848
polina3mag