-20x×2-50×2=100
-40x-100=100
-40x=100+100
-40x=200
x=200÷(-40)
x = -5
umkronchik95
умный
51 ответов
4.4 тыс. пользователей, получивших
первым вопросом мы должны найти бога, который не является богом случая, то есть является либо богом правды, либо богом лжи. Есть множество вопросов, которые могут быть заданы для достижения этой цели. Одна из стратегий — использование сложных логических связей в самом вопросе.
Вопрос Булоса: «Означает ли „da“ „да“, если и только если ты бог правды, а бог B — бог случая?». Другой вариант вопроса: «Является ли нечётным число истинных утверждений в следующем списке: ты — бог лжи, „ja“ означает „да“, B — бог случая?»
Решение задачи может быть упрощено, если использовать условные высказывания, противоречащие фактам (counterfactuals)[4][5]. Идея этого решения состоит в том, что на любой вопрос Q, требующий ответа «да» либо «нет», заданный богу правды или богу лжи:
Если я с тебя Q, ты ответишь «ja»?
ответом будет «ja», если верный ответ на вопрос Q это «да», и «da», если верный ответ «нет». Для доказательства этого можно рассмотреть восемь возможных вариантов, предложенных самим Булосом.
Предположим, что «ja» обозначает «да», а «da» обозначает «нет»:
Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «да».
Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «нет».
Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «da». То есть правильный ответ на вопрос «ja», который обозначает «да».
Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «ja». То есть правильный ответ на вопрос «da», который обозначает «нет».
Предположим, что «ja» обозначает «нет», а «da» обозначает «да» , получим :
Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «да».
Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «нет».
Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «ja». Но, так как он лжёт, верный ответ на вопрос Q — «da», что означает «да».
Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «da». Но, так как он лжёт, верный ответ на вопрос Q — «ja», что означает «нет».
Используя этот факт, можно задавать вопросы:[4]
Спросим бога B: «Если я с у тебя „Бог А — бог случая?“, ты ответишь „ja“?». Если бог B отвечает «ja», значит, либо он бог случая (и отвечает случайным образом), либо он не бог случая, а на самом деле бог A — бог случая. В любом варианте, бог C — это не бог случая. Если же B отвечает «da», то либо он бог случая (и отвечает случайным образом), либо B не бог случая, что означает, что бог А — тоже не бог случая. В любом варианте, бог A — это не бог случая.
Спросим у бога, который не является богом случая (по результатам предыдущего вопроса, либо A, либо C): «Если я с у тебя: „ты - бог лжи?“, ты ответишь „ja“?». Поскольку он не бог случая, ответ «da» обозначает, что он бог правды, а ответ «ja» обозначает, что он бог лжи.
Спросим у этого же бога «Если я у тебя с : „Бог B — бог случая?“, ответишь ли ты „ja“?». Если ответ «ja» — бог B является богом случая, если ответ «da», то бог, с которым ещё не говорили, является богом случая.
Оставшийся бог определяется методом исключения.
ответ: 14,4м²; 75,9кг
Пошаговое объяснение:
№13. Находим длину прямоугольника: l=a/0,45=3,6/0,45=8м
Находим площадь прямоугольника: S=a*l=3,6*8=28,8м²
Узнаем какой стала длина прямоугольника когда ее увеличили на 20% от первоначального размера: l1=l*1,2=8*1,2=9,6м
Узнаем ширину прямоугольника после увеличения его на 25%
а1=а*1,25=3,6*1,25=4,5м
Находим площадь увеличенного прямоугольника: S1=a1*l1=9,6*4,5=43,2м²
Узнаем на сколько увеличилась площадь нового прямоугольника: ΔS=S2-S2=43,2-28,8=14,4м²
№14. Находим ширину коробки: в=0,4а=5,7*0,4=2,28дм=2,3дм
Находим высоту коробки: с=1,25а=5,7*1,25=7,125=7,1дм
Находим объем коробки: V=а*в*с=5,7*2,3*7,1=93,081=93,1дм³
Находим вес зерна в коробке: для этого умножим плотность зерна на объем коробки: m=ρ*V=0,8*93,1=74,48=74,5кг
Узнаем сколько весит коробка с зерном: 74,5+1,4=75,9кг
Поделитесь своими знаниями, ответьте на вопрос:
(-20х-50)•2=100решите с проверкой
ответ: