Решение:
2x+1}} \right. \\\\\left \{ {{x\geq0} \atop {x-2x> 1 + 5}} \right. \\\\\left \{ {{x\geq0} \atop {-x>6}} \right. \\\\\left \{ {{x\geq0} \atop {x<-6}} \right. \\\\x\in (-\infty; -6) \cup [0; \infty)" class="latex-formula" id="TexFormula4" src="https://tex.z-dn.net/?f=969.6%5C%5C%5C%5C%5Cleft%20%5C%7B%20%7B%7Bx%5Cgeq0%7D%20%5Catop%20%7Bx-5%3E2x%2B1%7D%7D%20%5Cright.%20%5C%5C%5C%5C%5Cleft%20%5C%7B%20%7B%7Bx%5Cgeq0%7D%20%5Catop%20%7Bx-2x%3E%201%20%2B%205%7D%7D%20%5Cright.%20%5C%5C%5C%5C%5Cleft%20%5C%7B%20%7B%7Bx%5Cgeq0%7D%20%5Catop%20%7B-x%3E6%7D%7D%20%5Cright.%20%5C%5C%5C%5C%5Cleft%20%5C%7B%20%7B%7Bx%5Cgeq0%7D%20%5Catop%20%7Bx%3C-6%7D%7D%20%5Cright.%20%5C%5C%5C%5Cx%5Cin%20%28-%5Cinfty%3B%20-6%29%20%5Ccup%20%5B0%3B%20%5Cinfty%29" title="969.6\\\\\left \{ {{x\geq0} \atop {x-5>2x+1}} \right. \\\\\left \{ {{x\geq0} \atop {x-2x> 1 + 5}} \right. \\\\\left \{ {{x\geq0} \atop {-x>6}} \right. \\\\\left \{ {{x\geq0} \atop {x<-6}} \right. \\\\x\in (-\infty; -6) \cup [0; \infty)">
Відповідь:
Покрокове пояснення:
x>-2\\x \in (-2;1)\\ \\4) -12<2(x+3)<4\\-12<2x+6<4\\-12-6<2x<4-6\\-18<2x<-2\\-9<x<-1\\x\in (-9;-1)" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=3%29%203%3C7-4x%3C15%5C%5C3-7%3C-4x%3C15-7%5C%5C-4%3C-4x%3C8%5C%5C1%3Ex%3E-2%5C%5Cx%20%5Cin%20%28-2%3B1%29%5C%5C%20%5C%5C4%29%20-12%3C2%28x%2B3%29%3C4%5C%5C-12%3C2x%2B6%3C4%5C%5C-12-6%3C2x%3C4-6%5C%5C-18%3C2x%3C-2%5C%5C-9%3Cx%3C-1%5C%5Cx%5Cin%20%28-9%3B-1%29" title="3) 3<7-4x<15\\3-7<-4x<15-7\\-4<-4x<8\\1>x>-2\\x \in (-2;1)\\ \\4) -12<2(x+3)<4\\-12<2x+6<4\\-12-6<2x<4-6\\-18<2x<-2\\-9<x<-1\\x\in (-9;-1)">
Поделитесь своими знаниями, ответьте на вопрос: