1) 1-3x=2sin(x)cos(x)
единицу представим по тригонометрическому тождеству:1=sin²x+cos²x
sin²x+cos²x-3cos²x-2sin(x)cos(x)=0
sin²x-2sin(x)cos(x)-2cos²x=0
делим каждый член уравнения на cos²x
tg²x-2tgx-2=0
решаем квадратное уравнение
D=12
tgx₁=1+√3 tgx₂=1-√3
x₁=arctg(1+√3)+ x₂=arctg(1-√3)+
2) 3Sin²x+2SinxCosx=2
3Sin²x+2SinxCosx=2(Sin²x+Cos²x)
Sin²x+2SinxCosx-2Cos²x=0
Уравнение однородное 2 степени. Разделим его на Cos²x
Tg²x+2Tgx-2=0
Tgx=y
y²+2y-2=0
D=12>0
y=(-2+2√3)/2=-1+√3 или y=(-2-2√3)/2= -1-√3
Tgx=-1+√3⇒ x=arctg(-1+√3)+πn,n∈Z
Tgx= -1-√3 ⇒x= arctg(-1-√3)+πn,n∈Z
Поделитесь своими знаниями, ответьте на вопрос:
1. найдите длину пути от озера до реки по туристской тропе, если известно, что тропа втрое короче пути по шоссе , а путь по шоссе на 8 км длиннее пути по тропе длина пути: по по 2.выразите из равенства каждую переменную через другие. а) a+b+c=1 б)a+2b+3c=5 в)a-b-c=0 a=1-b-c a= a= b= 2b= -b= c= b= b = 3c= -c= c= c=
1) Пусть у = х².
2) Тогда получаем новое уравнение второй степени:
у² - 5у + 4 = 0
Коэффициенты данного уравнения: a = 1, b = -5, c = 4.
Дискриминант равен:
D = b2 – 4ac = (-5)2 – 4 · 1 · 4 = 9
Дискриминант D > 0, следовательно уравнение имеет два действительных корня.
у1 = (-b + √D) / 2а = (-(-5) + √9) / 2 * 1 = 4.
у2 = (-b - √D) / 2а = (-(-5) - √9) / 2 * 1 = 1.
3) Вернувшись к замене у = х², подставим в нее вместо у найденные значения и получим два сокращенных квадратных уравнения: х² = 4 и х² = 1.
4) х² = 4
х = ±√4
х1,2 = ±2;
х² = 1
х = ±√1
х3,4 = ±1.
ответ: х1,2 = ±2; х3,4 = ±1.