Сначала разберём таблицу. В первой строке - значения выборки, вторая строка - показывает сколько раз каждое значение встречается в выборке. Таким образом полная выборка будет такой: 2; 5; 5; 5; 7; 7; 8; 8; 8; 8. Количество значений в выборке будет равно 10 (это обозначается так n = 10).
1) Среднее арифметическое = (2 · 1 + 5 · 3 + 7 · 2 + 8 · 4) / 10 = 6,3
2) Дисперсия обозначается S² и вычисляется по формуле: сумму разностей квадратов значения выборки и её среднего арифметического поделить на (n-1). Получаем
S² = ( (2 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (7 - 6,3)² + (7 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² ) / 10 - 1 = 4,01
3) Среднее квадратическое отклонение обозначается буквой ω:
ω = √S² = √4,01 = 2,002
4) Мода - это значение встречающееся в выборке чаще других, то есть
мода = 8
Если выборка содержит нечетное количество элементов, медиана равна (n+1)/2-му элементу.
Если выборка содержит четное количество элементов (как в нашем случае), медиана лежит между двумя средними элементами выборки и равна среднему арифметическому, вычисленному по этим двум элементам. То есть
медиана = (7 + 7) / 2 = 7
В решении.
Объяснение:
Розвяжіть нерівність:
а) x²-x-12<= 0.
Приравнять к нулю и решить как квадратное уравнение:
x²-x-12=0
D=b²-4ac = 1 + 48 = 49 √D= 7
х₁=(-b-√D)/2a
х₁=(1-7)/2
х₁= -6/2
х₁= -3;
х₂=(-b+√D)/2a
х₂=(1+7)/2
х₂=8/2
х₂=4.
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -3 и х= 4, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у <= 0 (график ниже оси Ох) при х∈[-3; 4].
Решение неравенства х∈[-3; 4].
Неравенство нестрогое, скобки квадратные.
b) x² - 16 < 0
Приравнять к нулю и решить как квадратное уравнение:
x² - 16 = 0
x² = 16
х = ±√16
х = ±4.
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -4 и х= 4, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у < 0 (график ниже оси Ох) при х∈(-4; 4).
Решение неравенства х∈(-4; 4).
Неравенство строгое, скобки круглые.
Поделитесь своими знаниями, ответьте на вопрос:
Встакане с ручками стоят 6 ручек, которые еще пишут, и 4 ручки, которые уже не пишут. случайно выбирается одна ручка. какова вероятность того, что она пишет?