Простейшими тригонометрическими неравенствами называются неравенства вида sinx\vee a, cosx\vee a, tgx\vee a, ctgx\vee a, где \vee – один из знаков < ,\; > ,\; \leq,\; \geq, a\in r. вы должны прежде, конечно, хорошо ориентироваться в тригонометрическом круге и уметь решать простейшие тригонометрические уравнения (часть i, часть ii). круг тригонометрический кстати, умение решать тригонометрические неравенства может пригодиться, например, в №11 егэ по . сначала мы рассмотрим простейшие тригонометрические неравенства с синусом и косинусом. во второй части статьи – с тангенсом, котангенсом. пример 1. решить неравенство: cosx< \frac{1}{2}. решение: отмечаем на оси косинусов \frac{1}{2}. все значения cosx, меньшие \frac{1}{2}, – левее точки \frac{1}{2} на оси косинусов. 87 отмечаем все точки (дугу, точнее – серию дуг) тригонометрического круга, косинус которых будет меньше \frac{1}{2}. ен полученную дугу мы проходим против часовой стрелки то есть от точки \frac{\pi}{3} до \frac{5\pi}{3}. обратите внимание, многие, назвав первую точку \frac{\pi}{3}, вместо второй точки \frac{5\pi}{3} указывают точку -\frac{\pi}{3}, что неверно! становится видно, что неравенству удовлетворяют следующие значения x: \frac{\pi}{3}+2\pi n следите за тем, чтобы «правая/вторая точка» была бы больше «левой/первой». не забываем «накидывать» счетчик 2\pi n,\; n\in z. вот так выглядит графическое решение неравенства не на тригонометрическом круге, а в прямоугольной системе координат: тригонометрические неравенства пример 2. решить неравенство: cosx\geq -\frac{\sqrt2}{2}. решение: отмечаем на оси косинусов -\frac{\sqrt2}{2}. все значения cosx, большие или равные -\frac{\sqrt2}{2} – правее точки -\frac{\sqrt2}{2}, включая саму точку. тогда выделенные красной дугой аргументы x отвечают тому условию, что cosx\geq -\frac{\sqrt2}{2}. г-\frac{3\pi}{4}+2\pi n\leq x\leq \frac{3\pi}{4}+2\pi n,\; n\in z. пример 3. решить неравенство: sinx\geq -\frac{\sqrt3}{2}. решение: отмечаем на оси синусов -\frac{\sqrt3}{2}. все значения sinx, большие или равные -\frac{\sqrt3}{2}, – выше точки -\frac{\sqrt3}{2}, включая саму точку. 67 «транслируем» выделенные точки на тригонометрический круг: 6 -\frac{\pi}{3}+2\pi n \leq x\leq \frac{4\pi}{3}+2\pi n,\; n\in z пример 4. решить неравенство: sinx< 1. решение: кратко: л \frac{\pi}{2}+2\pi n или все x, кроме \frac{\pi}{2}+2\pi n,\; n\in z. пример 5. решить неравенство: sinx\geq 1. решение: неравенство sinx\geq 1 равносильно уравнению sinx=1, так как область значений функции y=sinx – [-1; 1]. 78н x=\frac{\pi}{2}+2\pi n,\; n\in z. пример 6. решить неравенство: sinx< \frac{1}{3}. решение: действия – аналогичны применяемым в примерах выше. но дело мы имеем не с табличным значением синуса. здесь, конечно, нужно знать определение арксинуса. 89 \pi -arcsin\frac{1}{3}+2\pi n если не понятно, загляните сюда –> + показать
esnails17
07.05.2021
Если я все верно понял и разобрал твой пример, то: №1 ((3x-4/x+1 - 2x-5/x+1 + x/x+1 )/(x/x^2-1)) = делю пополам уравнения и по действиям, думаю, что вы поймете. начну с конца. (x/x^2-1) = ((x+1)(x-1)/x) \\ умножим числитель на величину, обратную знаменателю x/x^2-1 ((3x-4-(2x-5))/x+1) + x/x+1)) = (1+x/x+1) \\ поделили на две части уравнения, и пришло время - объединить пример. (1+x/x+1) * ((x+1)(x-1))/x) \\ в данном уравнении, первую дробь умножаем на знаменатель и получаем вывод: (1(x+1)/1(x+1) + x/x+1) ((2x+1)(x+1) * ((x+1)(x-1)/x) =((2x+1)/-1)/x) =(2x+1)(x-1)/x ответ на первый пример: (2x+1)(x-1)/x №2 не особо понял мысль твоего уравнения, в следующий раз, будьте добры, отправлять фотографию примера, иногда бывает, что за готовое решение ставят жалобу и человек, который решал страйк! (a - a^2-3/a-2): 3-2a/4-4a+a^2 =так же как и в первом случае, начну с конца! переворачиваем дробь : ((4-4a+a^2)/3-2a) = ((2-a)^2)/(3-2a) \\ получили по формуле квадратного уравнения! вернемся к первой части, домножаем уравнение на (a-2) (a(a-2)/(a-2) - (a^2-3)/(a-2)) * -a)^2)/(3-2a)); => скомбинируем уравнение и получаем: +3/a-2))/((2-a)^2/(3-2a)) = числитель и его члены => )(2-a)^2/(a-2) => (a-2)(a-2)/(a-2)*1 = > a-2 ответ: a-2