Дано: bn – геометрическая прогрессия;
b1 + b2 = 30, b2 + b3 = 20;
Найти: b1; b2; b3 - ?
Формула члена геометрической прогрессии: bn = b1 * q^(n – 1),
где b1 – первый член геометрической прогрессии, q – её знаменатель, n – количество членов прогрессии этой формулы выразим второй и третий члены заданной прогрессии:
b2 = b1 * q^(2 – 1) = b1 * q;
b3 = b1 * q^(3 – 1) = b1 * q^2.
Т.о. имеем:
b1 + b2 = 30; и b2 + b3 = 20;
b1 + b1 * q = 30; b1 * q + b1 * q^2 = 20;
b1 (1 + q) = 30; b1 (q + q^2) = 20;
b1 = 30 / (1 + q). b1 = 20 / (q + q^2).
Т.е. 30 / (1 + q) = 20 / (q + q^2);
30 * (q + q^2) = 20 * (1 + q);
30q + 30q^2 = 20 + 20q;
30q^2 + 10q – 20 = 0;
D = (10)^2 – 4 * 30 * (-20) = 2500; sqrt(D) = sqrt (2500) = 50;
q1 = (-10 + 50) / 60 = 2/3;
q2 = (-10 - 50) / 60 = -1.
Подставим оба полученных значений q выражение для нахождения b1:
b1 = 30 / (1 + 2/3) = 30 / (5/3) = 90/5 = 18;
b1 = 30 / (1 + (-1)) = 30 / 0 – смысла не имеет, следовательно, q = 2/3.
b2 = b1 * q = 18 * 2/3 = 12;
b3 = b1 * q^2 = 18 * 2/3^2 = 8.
ответ: b1 = 18; b2 = 12; b3 =8.
Объяснение:
Объяснение:
Квадратичная функция задаётся формулой вида y = a x^{2} + bx + cy=ax
2
+bx+c
1) А(0;6) принадлежит графику, тогда её координаты удовлетворяют уравнению,
6 = a* 0^{2} + b*0 + c, 6 = c, y = a x^{2} + bx + 66=a∗0
2
+b∗0+c,6=c,y=ax
2
+bx+6
2) В(6; -6) и С(1;9) тоже принадлежат графику, тогда
\left \{ {{a* 6^{2} + b*6 + 6 = -6} \atop {a* 1^{2} + b*1 + 6 = 9 }} \right. ,{
a∗1
2
+b∗1+6=9
a∗6
2
+b∗6+6=−6
,
\left \{ {{a* 6 + b + 1 = - 1} \atop {a + b + 6 = 9 }} \right. ,{
a+b+6=9
a∗6+b+1=−1
,
\left \{ {{6a + b = - 2} \atop {a + b = 3 }} \right.{
a+b=3
6a+b=−2
\left \{ {{5a = - 5} \atop {a + b = 3 }} \right.{
a+b=3
5a=−5
\left \{ {{a = - 1} \atop {a + b = 3 }} \right.{
a+b=3
a=−1
\left \{ {{a = - 1} \atop {- 1 + b = 3 }} \right.{
−1+b=3
a=−1
y = - x^{2} + 4x + 6y=−x
2
+4x+6 - уравнение, задающее квадратичную функцию.
3) Найдём координаты вершины параболы:
x_{0} = \frac{- b}{2a} = \frac{-4}{-2} = 2x
0
=
2a
−b
=
−2
−4
=2
y_{0} = y( 2) = - 2^{2} + 4*2 + 6 = - 4 + 14 = 10y
0
=y(2)=−2
2
+4∗2+6=−4+14=10 ,
(2; 10) - координаты вершины параболы.
ответ: (2; 10).
Поделитесь своими знаниями, ответьте на вопрос:
Стороны прямоугольника равны 16см и 12 см. найдите диагональ прямоугольника