kobzev-e
?>

Стороны прямоугольника равны 16см и 12 см. найдите диагональ прямоугольника

Алгебра

Ответы

mon84
Диагональ равна √16^2+12^2 =√400=20cм
besson89

Дано: bn – геометрическая прогрессия;

b1 + b2 = 30, b2 + b3 = 20;

Найти: b1; b2; b3 - ?

 

Формула члена геометрической прогрессии: bn = b1 * q^(n – 1),

где b1 – первый член геометрической прогрессии, q – её знаменатель, n – количество членов прогрессии этой формулы выразим второй и третий члены заданной прогрессии:

b2 = b1 * q^(2 – 1) = b1 * q;

b3 = b1 * q^(3 – 1) = b1 * q^2.

Т.о. имеем:

b1 + b2 = 30;               и             b2 + b3 = 20;

b1 + b1 * q = 30;                        b1 * q + b1 * q^2 = 20;

b1 (1 + q) = 30;                         b1 (q + q^2) = 20;

b1 = 30 / (1 + q).                       b1 = 20 / (q + q^2).

 

Т.е. 30 / (1 + q) = 20 / (q + q^2);

30 * (q + q^2) = 20 * (1 + q);

30q + 30q^2 = 20 + 20q;

30q^2 + 10q – 20 = 0;

D = (10)^2 – 4 * 30 * (-20) = 2500; sqrt(D) = sqrt (2500) = 50;

q1 = (-10 + 50) / 60 = 2/3;

q2 = (-10 - 50) / 60 = -1.

Подставим оба полученных значений q выражение для нахождения b1:

b1 = 30 / (1 + 2/3) = 30 / (5/3) = 90/5 = 18;

b1 = 30 / (1 + (-1)) = 30 / 0 – смысла не имеет, следовательно, q = 2/3.

b2 = b1 * q = 18 * 2/3 = 12;

b3 = b1 * q^2 = 18 * 2/3^2 = 8.

ответ: b1 = 18; b2 = 12; b3 =8.

Объяснение:

d5806252

Объяснение:

Квадратичная функция задаётся формулой вида y = a x^{2} + bx + cy=ax

2

+bx+c

1) А(0;6) принадлежит графику, тогда её координаты удовлетворяют уравнению,

6 = a* 0^{2} + b*0 + c, 6 = c, y = a x^{2} + bx + 66=a∗0

2

+b∗0+c,6=c,y=ax

2

+bx+6

2) В(6; -6) и С(1;9) тоже принадлежат графику, тогда

\left \{ {{a* 6^{2} + b*6 + 6 = -6} \atop {a* 1^{2} + b*1 + 6 = 9 }} \right. ,{

a∗1

2

+b∗1+6=9

a∗6

2

+b∗6+6=−6

,

\left \{ {{a* 6 + b + 1 = - 1} \atop {a + b + 6 = 9 }} \right. ,{

a+b+6=9

a∗6+b+1=−1

,

\left \{ {{6a + b = - 2} \atop {a + b = 3 }} \right.{

a+b=3

6a+b=−2

\left \{ {{5a = - 5} \atop {a + b = 3 }} \right.{

a+b=3

5a=−5

\left \{ {{a = - 1} \atop {a + b = 3 }} \right.{

a+b=3

a=−1

\left \{ {{a = - 1} \atop {- 1 + b = 3 }} \right.{

−1+b=3

a=−1

y = - x^{2} + 4x + 6y=−x

2

+4x+6 - уравнение, задающее квадратичную функцию.

3) Найдём координаты вершины параболы:

x_{0} = \frac{- b}{2a} = \frac{-4}{-2} = 2x

0

=

2a

−b

=

−2

−4

=2

y_{0} = y( 2) = - 2^{2} + 4*2 + 6 = - 4 + 14 = 10y

0

=y(2)=−2

2

+4∗2+6=−4+14=10 ,

(2; 10) - координаты вершины параболы.

ответ: (2; 10).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Стороны прямоугольника равны 16см и 12 см. найдите диагональ прямоугольника
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

denis302007
dkedrin74038
Александрович Василий
gulsinatahckeeva
izykova22
msangelika1010
centrprof20
dmitriyb1
Panda062000
galkar
kristina1989
starh
pannotolstova488
aivia29
Юрий197