ilplakhotin8734
?>

Определите вид треугольника, заданного координатами своих вершин: m (–8; – 3 ), n (–2; 6 ), k (4; –3

Алгебра

Ответы

Anatolevich

сначала черти координатную плоскость.затем по этим координатам определяй точки.т.е.это будет у тебя типо произвольного треугольника у которого все стороны равны                             /   \    

                                    /       \

                                  /           \

                                /               \

                              /

типо этого.но чуток побольше

modellisimo-a
Did you go to the mountains last winter? did you go to the mountains last winter or summer? where did you go last winter? i went to the mountains last winter, aren't i? who went to the mountains last winter? was it your birthday yesterday? was it your birthday yesterday or the day before yesterday? when was it your birthday? it was your birthday yesterday, wasn't it? what was it yesterday? was my brother on holiday in autumn last year? was my brother on holiday in autumn or in spring last year? when was my brother on holiday? my brother was on holiday in autumn last year, wasn't he? who was on holiday in autumn last year?
Андрей Шитенкова
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.  глава 5. решение треугольников  5.1. прямоугольный треугольник  аксиомы 1.4 и 2.1 позволяли приписывать отрезкам и углам числа, равные их мерам, то есть измерять отрезки и углы. до сих пор не было связи между величинами углов и длинами отрезков. с введением треугольников появляется возможность связать величины градусных мер углов треугольника и длин его сторон. рассмотрим соотношения между сторонами и углами прямоугольного треугольника.  1  рисунок 5.1.1.  прямоугольный треугольник.  косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. пусть угол (bac) – искомый острый угол. так, например, для угла bac (рис. 5.1.1)  теорема 5.1.  косинус угла зависит только от градусной меры угла и не зависит от расположения и размеров треугольника.  доказательство  пусть abc и a1b1c1 – два прямоугольных треугольника с одним и тем же углом при вершинах a и a1, равным α . построим треугольник ab2c2, равный треугольнику a1b1c1, как показано на рис. 5.1.2. это возможно по аксиоме 4.1. так как углы a и a1 равны, то b2 лежит на прямой ab. прямые bc и b2c2 перпендикулярны прямой ac, и по следствию 3.1 они параллельны. по теореме 4.13  2  рисунок 5.1.2.  к теореме 5.1.  но по построению ac2 = a1c1; ab2 = a1b1, следовательно,  что и требовалось доказать.  теорема 5.2.  теорема пифагора. в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.  модель 5.2. доказательство теоремы пифагора.  на рисунке 5.1.3 изображен прямоугольный треугольник. bc и ac – его катеты, ab – гипотенуза. по теореме bc2 + ac2 = ab2.  доказательство  пусть abc – данный прямоугольный треугольник с прямым углом при вершине c.  3  рисунок 5.1.3.  к доказательству теоремы пифагора.  проведем высоту cd из вершины c. по определению из треугольника acd и из треугольника abc. по теореме 5.1 и, следовательно, . аналогично из δ cdb, из δ acb, и отсюда ab · bd = bc2. складывая полученные равенства и, замечая, что ad + bd = ab, получаем ac2 + bc2 = ab · ad + ab · bd = ab (ad + bd) = ab2. теорема доказана.  в прямоугольном треугольнике любой из катетов меньше гипотенузы. косинус любого острого угла меньше единицы.  пусть [bc] – перпендикуляр, опущенный из точки b на прямую a, и a – любая точка этой прямой, отличная от c. отрезок ab называется наклонной, проведенной из точки b к прямой a. точка c называется основанием наклонной. отрезок ac называется проекцией наклонной.  с теоремы пифагора можно показать, что если к прямой из одной точки проведены перпендикуляр и наклонные, то  любая наклонная больше перпендикуляра,  равные наклонные имеют равные проекции,  из двух наклонных больше та, у которой проекция больше.  синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. по определению  тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему. для угла (bac) прямоугольного треугольника, изображенного на рис. 5.1.1, имеем  так же как и косинус, синус угла и тангенс угла зависят только от величины угла.  4  рисунок 5.1.4.  из данных определений получаем следующие соотношения между углами и сторонами прямоугольного треугольника: если α – острый угол прямоугольного треугольника, то  катет, противолежащий углу α , равен произведению гипотенузы на sin α;   катет, прилежащий к углу α , равен произведению гипотенузы на cos α;   катет, противолежащий углу α , равен произведению второго катета на tg α.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Определите вид треугольника, заданного координатами своих вершин: m (–8; – 3 ), n (–2; 6 ), k (4; –3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

masamosijcuk140244
viz-art-pnz1664
afoninia
polotovsky
rublevaoe392
LesnovaVeronika1830
tpomyleva6
Анатольевич Сергей7
arturnanda803
Demina-Khokhlov584
Garifovich Greshilova791
НатальяРуктешель472
artemkolchanov24
ЛаринаЛощаков
alexanderpokrovskij6