{2^{x}}{3^{x}})^{2}=(\frac{2}{3})^{2x}\; \; ,\; \; \; \; \frac{2}{3}\leq (\frac{2}{3})^{2x}\leq 1\; \; \rightarrow \; \; 0\leq 2x\leq 1\; \; ,\; \; 0\leq x\leq 0,: \; \; x\in 0\, ; \, 0,5\, ]\; .[/tex]
x^2+y^2+2xy+4(x+y)=27
(x+y)^2+4(x+y)+4=31
((x+y)+2)^2=(sqrt(
(x+y)=-2+sqrt(31) x+y=-2-sqt(31)
1) (x-y)^2-4(x+y)=7
(x-y)^2=7-8+4*sqrt(31)=4*sqrt(31)-1
x-y=sqrt(4*sqrt(31)-1) x-y=-sqrt(4*sqrt(31)-1)
a) x=1+(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
y=1-(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
b) x=1-(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
y=1+(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
2) вариант x+y=-2-sqt(31)
невозможен, т.к. тогда (х-у)^2< 0
ответ : два решения
a) x=1+(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
y=1-(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
b) x=1-(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
y=1+(sqrt(31)+ sqrt(4*sqrt(31)-1))/2
"красивого" ответа с этими числами нет.
Поделитесь своими знаниями, ответьте на вопрос:
Y=-3x^+6x+5 вычислить координаты вершины параболы