y = x³ + 3x² - 45x - 2
Найдём производную :
y' = (x³)' + 3(x²)' - 45(x)' - 2' = 3x² + 6x - 45
Приравняем производную к нулю и найдём критические точки :
3x² + 6x - 45 = 0
x² + 2x - 15 = 0
По теореме Виета :
x₁ = - 5
x₂ = 3
Найдём значения функции в критических точках и на концах отрезка и сравним их .
y(- 5) = (- 5)³ + 3 * (- 5)² - 45 * (- 5) - 2 = - 125 + 75 + 225 - 2 = 173
y(3) = 3³ + 3 * 3² - 45 * 3 - 2 = 27 + 27 - 135 - 2 = - 83
y(- 8) = (- 8)³ + 3 * (- 8)² - 45 * (- 8) - 2 = - 512 + 192 + 360 - 2 = 38
y(8) = 8³ + 3 * 8² - 45 * 8 - 2 = 512 + 192 - 360 - 2 = 342
y(наим) = - 83
y(наиб) = 342
Поделитесь своими знаниями, ответьте на вопрос:
Иследовать функцию и построить её график. 2) 10)
1)Решение системы уравнений (6; 1);
2)Решение системы уравнений (4; -1).
Объяснение:
1)Решить систему уравнений методом подстановки:
х-у=5
4х-у=23
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=5+у
4(5+у)-у=23
20+4у-у=23
3у=23-20
3у=3
у=1
х=5+у
х=5+1
х=6
Решение системы уравнений (6; 1)
2)Решить систему уравнений методом сложения:
2х+3у=5
15х+6у=54
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на -2:
-4х-6у= -10
15х+6у=54
Складываем уравнения:
-4х+15х-6у+6у= -10+54
11х=44
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
2х+3у=5
3у=5-2х
3у=5-2*4
3у= -3
у= -1
Решение системы уравнений (4; -1)