из второго следует первое, но из первого не следует второе(например x=2,1), значит они не равносильны
1. корень четной степени существует. если подкоренное выражение неотрицательно. т.е. 11+х≥0, х≥-11, на нуль делить нельзя, поэтому х²-3х-10≠0; по Виету корнями уравнения х²-3х-10=0 служат х=5;х=-2, тогда ОДЗ х≠5, х≠-2, окончательно, D(у)=[-11; -2)∪(-2;5)∪(5;+∞)
2. 4-8х≥0; х≤0.5; х²-4.5х-9>0; решим уравнение х²-4.5х-9=0;
х=(4.5±√(20.25+36)/2=(4.5±√(56.25)/2=(4.5±7.5)/2; х=6; х=-1.5, вернемся к последнему неравенству.
______-1.5_______6_______________
+ - +
х∈(-∞;-1.5)∪(6;+∞)
Областью определения будет пересечение двух решений неравенств.
х∈(-∞;-1.5)
№1
степень основание степени показатель степени
7⁹ 7 9
(а+в)⁶ (а+в) 6
0,75³ 0,75 3
32² 32 2
(-1,6)⁵ (-1,6) 5
(х*у)² (х*у) 2
----------------------------------------------------------------------------------
№2
1) 6⁴ * 6³ хᵃ * хᵇ=хᵃ⁺ᵇ 6⁷
2) 6⁶⁻³ хᵃ⁻ᵇ=хᵃ : хᵇ 6⁶:6³
3) (6⁴)² (хᵃ)ᵇ=хᵃ*ᵇ 6⁸
4) 2¹² * 3¹² аⁿ *вⁿ=(а*в)ⁿ 6¹²
Поделитесь своими знаниями, ответьте на вопрос:
Выяснить, равносильны ли уравнения: i2x-1i=3 и 2x-1=3
2x-1=3;
2x=3+1;
2x=4;
x=2
|2x-1|=3; < =>
2x-1=3 при 2x-1> =0
и 2x-1=-3 при 2x-1< 0;
2x-1=3
x=2; 2*2-1=3> =0, значит 2 -решение
2x-1=-3;
2x=-3+1;
2x=-2;
x=-1; 2*(-1)-1=-2-1=-3< 0 , значит -1 решение
у первого уравнения два корня 2 и -1, у второго только одно решение 2, поэтому они не равносильны
(равносильные уравнения - те у которых совпадает множество решений, или те которые оба не имеют решений)