Область определения функции: множество всех действительных чисел.
2. Не периодическая функция.
3. Проверим на четность или нечетность функции:
Итак, функция является нечетной.
4. Точки пересечения с осью Ох и Оу:
4.1. С осью Ох (у=0):
4.2. С осью Оу (x=0):
5. Критические точки, экстремумы, возрастание и убывание функции.
___+____(-2)___-__(2)_____+____
Функция возрастает на промежутке x∈(-∞;-2) и x∈(2;+∞), а убывает - x ∈ (-2;2). Производная функции в точке х=-2 меняет знак с (+) на (-), следовательно точка х=-2 - локальный максимум, а в точке х=2 производная функции меняет знак с (-) на (+), значит точка х=2 - локальный минимум.
6. Точки перегиба.
На промежутке x ∈ (-∞;0) функция выпукла вверх, а на промежутке x ∈ (0;+∞) выпукла вниз.
7. Горизонтальной, вертикальной и наклонной асимптот нет.
1.
(х-2)(х-3)(х-4)=(х-3)(х-4)(х-5)переносим в одну сторону
(х-2)(х-3)(х-4)-(х-3)(х-4)(х-5) =0выносим за скобки одинаковые множители
(х-3)(х-4)((х-2) - (х-5)) =0Чтобы получить произведение равное нулю, хотя бы один из множителей должен быть равен 0
получает три уравнения
(х-3) = 0 и (х-4) =0 и ((х-2) -(х-5)) = 0
х = 3 х= 4 х -2 -х+5 = 0
3 = 0 не имеет смысла
ответ х = 3, х=4
2.
переносим все влево от знака равно и меняем знак на противоположный у того, что переносим:
(х-2)(х-3)(х-4) - (х-3)(х-4)(х-5) = 0
2. Выносим за скобки общие множители:
(х-3)(х-4)((х-2)-(х-5))=0
3. раскрываем скобки, т.к. перед х-5 стоит знак минус, меняем занки на противоположные:
(х-3)(х-4)(х-2-х+5)=0
4, упростим выражение в скобке:
х-х-2+5=3
5. вернемся к уравнению
(х-3)(х-4)*3=0
оно равно нулю, когда одна из скобок равна нулю. Значит нужно решить два уравнения:
х-3=0 и х-4=0
х=3 и х=4
ответ. х=3; 4
Поделитесь своими знаниями, ответьте на вопрос:
Одно число меньше другого на 16, а их произведение равно 80. найдите эти числа.