вам нужны формулы "косинус двойного угла" и "косинус суммы углов"
cos2x=2cos^2x-1
cos(x+y)= cosx*cosy-sinx*siny
отсюда, преобразовуя ваш пример/ имеем
5cos2x+7(cosx*cosп/2-sinx*sinп/2)+1=0
cosп/2=0 sinп/2=1, значит
5cos2x+7(-sinx)+1=0
10cos^2x-1-7sinx+1=0
10cos^2x=7sinx
10-10sin^2x=7sinx
10sin^2x+7sinx-10=0, а дальше ищем дискриминант, ибо это квадратное уравнение.
фух! забодался я. молодой человек, сборник сканави (как я сразу не просек) не для того придумали, чтобы вы ответы в сети искали. лучше попробуйте сами порешать. если хотя бы 20% одолеете, вам все местные будут по плечу.
Поделитесь своими знаниями, ответьте на вопрос:
Может кто ? найдите значения выражений: 1) 1/2 + √2*cosα, если sinα=√2/2, α∈[90°; 270°] 2) √2/10*sinα + 2, если cosα = √2/2, α∈[180°; 360]
если sinα=√2/2, α∈[90°; 270°] cosα=-√2/2
1/2 + √2*(-√2/2)=-1/2
2) cosα = √2/2, α∈[180°; 360] sinα=-√2/2
√2/10*(-√2/2) + 2=-1/10+2=1,9