нет
Объяснение:
2x² +2x +1 -7y² = 2007 ⇔ 2x²+2x -2006 = 7y² ( 1 )
так как левая часть равенства ( 1 ) - четное число , то и правая
часть кратна 2 ⇒ 7y² делится на 2 ⇒ y делится на 2 ⇒
y = 2k ; k∈Z , подставим в (1) вместо y число 2к :
2x²+2x -2006 =28k² ⇒ x²+x -14k² = 1003 или :
x(x+1) -14k² = 1003 ( 2 )
x и ( x +1 ) - 2 последовательных натуральных числа ⇒ одно
из них обязательно четно ⇒ x(x+1) - четно ⇒ x(x+1) -14k² - четно
, как разность двух четных чисел , но 1003 - нечетное число
⇒ равенство ( 2) невозможно ⇒ уравнение (1) не имеет
решений в целых числах
Поделитесь своими знаниями, ответьте на вопрос:
Спараметром, , . при каком наибольшем целом значении параметра a неравенство -3 < (x^2+ax-2)/(x^2-x+1) < 2 выполняется при всех действительных x.
(x²+ax-2+3x²-3x+3)/(x²-x+1)>0
x²-x+1>0 при любом х,т.к.D<0⇒4x²+x(a-3)+1>0
D=a²-6a+9-16=a²-6a-7>0
a1+a2=6 U a1*a2=-7
a1=-1 U a2=7
a<-1 U a>7
2)(x²+ax-2)/(x²-x+1)<2
(x²+ax-2-2x²+2x-2)/(x²-x+1)<0
-x²+x(a+2)-4<0
x²-x(a+2)+4>0
D=a²+4a+4-16=a²+4a-12>0
a1+a2=-4 U a1+a2=-12
a1=-6 U a2=2
a<-6 U a>2
a∈(-∞;-6) U (7;∞)