Исследовать функцию y=-x^4+8x^2-9 и построить ее график.
1. Область определения функции - вся числовая ось.
2. Функция y=-x^4+8x^2-9 непрерывна на всей области определения. Точек разрыва нет.
3. Четность, нечетность, периодичность:
Так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.
4. Точки пересечения с осями координат:
Ox: y=0, -x^4+8x^2-9=0, заменим x^2 = n.
Квадратное уравнение, решаем относительно n:
Ищем дискриминант:
D=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;
Дискриминант больше 0, уравнение имеет 2 корня:
n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;
n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.
Обратная замена: х = √n.
x₁ = √1,354249 = 1,163722, x₂ = -1,163722.
x₃ = √6,645751 = 2,57793, x₄ = -2,577935.
Получаем 4 точки пересечения с осью Ох:
(1,163722; 0), (-1,16372; 0), (2,57793; 0), (-2,57793; 0).
x₃ = √6,645751 = 2,57793,
Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.
5. Промежутки монотонности и точки экстремума:
y=-x^4+8x^2-9.
y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.
Имеем 3 критические точки: х = 0, х = 2 и х = -2.
Определяем знаки производной вблизи критических точек.
x = -3 -2 -1 0 1 2 3
y' = 60 0 -12 0 12 0 -60.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
Минимум функции в точке: x = 0.
Максимумы функции в точках:
x = -2.
x = 2.
Убывает на промежутках (-2, 0] U [2, +oo).
Возрастает на промежутках (-oo, -2] U [0, 2).
6. Вычисление второй производной: y''=-12х² + 16 ,
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
Вторая производная 4 \left(- 3 x^{2} + 4\right) = 0.
Решаем это уравнение
Корни этого уравнения
x_{1} = - \frac{2 \sqrt{3}}{3}.
x_{2} = \frac{2 \sqrt{3}}{3}.
7. Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]
Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)
8. Искомый график функции в приложении.
Подробнее - на -
Объяснение:
54 варианта.
Объяснение:
По 2 натуральных слагаемых:
7 = 6+1 = 5+2 = 4+3 = 3+4 = 2+5 = 1+6
6 вариантов.
По 3 натуральных слагаемых:
7 = 5+1+1 = 4+2+1 = 4+1+2 = 3+3+1 = 3+2+2 = 3+1+3 = 2+2+3 = 2+4+1 = 2+3+2 = 2+1+4 = 1+3+3 = 1+2+4 = 1+4+2 = 1+5+1 = 1+1+5
15 вариантов.
По 4 натуральных слагаемых:
7 = 4+1+1+1 = 3+2+1+1 = 3+1+1+2 = 3+1+2+1 = 2+2+2+1 = 2+2+1+2 = 2+1+2+2 = 1+3+1+2 = 1+3+2+1 = 1+2+3+1 = 1+2+1+3 = 1+1+2+3 = 1+1+3+2 = 1+2+2+2 = 1+1+1+4
15 вариантов.
По 5 натуральных слагаемых:
7 = 3+1+1+1+1 = 2+2+1+1+1 = 2+1+2+1+1 = 2+1+1+2+1 = 2+1+1+1+2 = 1+2+2+1+1 = 1+2+1+2+1 = 1+2+1+1+2 = 1+1+2+1+2 = 1+1+2+2+1 = 1+1+1+2+2
11 вариантов.
По 6 натуральных слагаемых:
7 = 2+1+1+1+1+1 = 1+2+1+1+1+1 = 1+1+2+1+1+1 = 1+1+1+2+1+1 = 1+1+1+1+2+1 = 1+1+1+1+1+2
6 вариантов.
По 7 натуральных слагаемых:
7 = 1+1+1+1+1+1+1
1 вариант.
Всего 6+15+15+11+6+1 = 54 варианта.
Поделитесь своими знаниями, ответьте на вопрос:
4. решите уравнение: 5a2 - 2a = 0; 5. докажите заданное тождество: (x - y) 2 - 2 xy + 2 x2 - y2 = x (3x-4y); вариант iii 1. разложите следующие выражения на множители: а) 3z3 - 6z2; б) 4c2 - 8; б) 3b2 + 6b - 9 +3b; 2. решите уравнение: 2z3 - 4z2 + 3z - 6 = 0; 3. сократите заданную дробь: 3cd2⁄cde; 4. решите уравнение: 6b2 - 2b = 0; 5. докажите заданное тождество: 2xy - (x - y) 2 - 2 x2 = (x - y)(x +y);
а(5а-2)=0
а1=0
5а-2=0
5а=2
а2=0.4
берем левую часть
(х-у)^2-2ху+2х^2-у^2=х^2-2ху+у^2-2ху+2х^2-у^2=
=3х^2-4ху=х(3х-4у)
тождество доказано
3z^3-6z^2=3z^2(z-2)
4c^2-8=4(c^2-2)
3b^2+6b-9+3b=3b^2-9+9b=3(b^2-3+3b)
3cd^2/cde=3d/e
6b^2-2b=0
2b(3b-1)=0
2b=0
b1=0
3b-1=0
b2=1/3
последнее непонятно