arhangel1055
?>

Как решить пример с остатком? 842748: 27=?

Алгебра

Ответы

nchorich55
Решение примера во вложении

Как решить пример с остатком? 842748: 27=?
annarom1306
1)
Находим y из первого уравнения
5y=1-6x
y=(1-6x)/5
подставляем y во второе уравнение и решаем
2x-3((1-6x)/5)=33
2x-3/5+18x/5=33
2x-0.6+3.6x=33
5,6x=33+0.6
x=33.6/5.6
x=6
подставляем x в первое уравнение
6*6+5y=1
5y=1-36
y=-35/5
y=-7
проверяем
6*6+5*(-7)=1
36-35=1
1=1
ответ x=6, y=-7
2)
Находим y из первогоуравнения
2-3x=2-2y
-3x=-2y
y=3x/2
подставляем y во второе уравнение
4(x+3x/2)=x-1.5
4x+6x=x-1.5
4x+6x-x=-1.5
9x=-1.5
x=-1.5/9
x=-0.17
2-3*(-0.17)=2-2y
2+0.51=2-2y
2y=2-2-0.51
y=-0.51/2
y=-0.255

Проверяем
2-3*0,17=2(1-0.255)
2-0.51=2-0.51
1.49=1.49

ответ x=-0.17, y=-0.255
ivanpetrovichru1801
Разложим число ab(a² - b²) на множители: ab(a² - b²) = ab(a - b)(a + b).
Нам нужно доказать, что это число делится на 6 <=> делится на 2 и на 3.
Докажем, что число ab(a - b)(a + b) делится на 2. Если хотя бы одно из чисел а и b четно, то все нормально. Если a и b нечетные, то разность (a - b) делится на 2 и тоже вче нормально.
Докажем, что число ab(a - b)(a + b) делится на 3. Если хотя бы одно из чисел a и b делится на 3, то все нормально. Если числа a и b не делятся на 3, но дают одинаковые остатки при делении на 3, то разность (a - b) делится на 3. Если числа a и b не делятся на 3 и дают разные остатки при делении на 3, то сумма (а + b) делится на 3.
Значит, число ab(a² - b²) = ab(a - b)(a + b) делится на 2 и на 3, значит и на 6.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Как решить пример с остатком? 842748: 27=?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

shhelina
Borisovna24
Malenyuk
brendacepedam
lazu8375
upmoskovskiy
stanefimov
alexandergulyamov
Boykoyelena
alisabutusova
Espivak
armusaeff
Виктор Попова
Vyacheslavovna1867
Apresov