mursvita943
?>

Как решить этот определенный интеграл? интеграл с верхней границей pi/4 и нижней выражение arctgxdx

Алгебра

Ответы

Анатольевна
\int _0^{\frac{\pi}{4}}\, arctgx\, dx=\\\\=[\, u=arctgx,\; du=\frac{dx}{1+x^2},\; dv=dx,\; v=\int dv=\int dx=x\, ]=\\\\=[\, \int u\cdot dv=uv-\int v\cdot du\, ]=x\cdot arctgx|_0^{\frac{\pi}{4}}-\int _0^{\frac{\pi}{4}}\frac{x\, dx}{1+x^2} =\\\\=\frac{\pi}{4}-\frac{1}{2}\int _0^{\frac{\pi}{4}}\frac{d(1+x^2)}{1+x^2}=[\, \int \frac{dt}{t}=ln|t|+C,\; t=1+x^2\, ]=\\\\=\frac{\pi}{4}-\frac{1}{2}\cdot ln|1+x^2||_0^{\frac{\pi}{4}}=\frac{\pi}{4}-\frac{1}{2}\cdot ln(1+\frac{\pi ^2}{4})
notka19746

Объяснение:

Система уравнений:

x/2 +y/2 -2xy=16          |×2

x+y=-2

x+y-4xy=32

-2-4xy=32

-4xy=32+2

-4xy=34                    |2

x=-17/(2y)

-17/(2y) +y=-2

(-17+2y²)/(2y)=-2

-17+2y²=-4y

2y²+4y-17=0; D=16+136=152

y₁=(-4-2√38)4=(-2-√38)/2

y₂=(-4+2√38)4=(√38 -2)/2

x₁+(-2-√38)/2=-2; x₁=(-4+2+√38)/2=(√38 -2)/2

x₂+(√38 -2)/2=-2; x₂=(-4-√38 +2)/2=(-2-√38)/2

ответ: ((√38 -2)/2; (-2-√38)/2); ((-2-√38)/2; (√38 -2)/2).

Система уравнений:

x/2 +y/2 +2xy=4

x-y=4

x/2 +y/2 +2xy=x-y                  |×2

x+y+4xy=2x-2y

4xy=2x-2y-x-y

4xy=x-3y

x-4xy=3y

x(1-4y)=3y

x=(3y)/(1-4y)

(3y)/(1-4y) -y=4

(3y-y+4y²)/(1-4y)=4

2(y+2y²)=4(1-4y)                   |2

2y²+y-2+8y=0

2y²+9y-2=0; D=81+16=97

y₁=(-9-√97)/4

y₂=(-9+√97)/4=(√97 -9)/4

x₁ -(-9-√97)/4=4; x₁=(16-9-√97)/4=(7-√97)/4

x₂ -(√97 -9)/4=4; x₂=(16+√97 -9)/4=(7+√97)/4

ответ: ((7-√97)/4; (-9-√97)/4); ((7+√97)/4; (√97 -9)/4).

sotrudnik3
Уравнение квадратной параболы в общем виде: у = ах² + вх + с
Найдём коэффициенты а, в, с
Подставим координаты точки А
-6 = а· 0² + в·0 + с → с = -6
Подставим координаты точки В
-9 = а·1² + в·1 - 6 → а + в = -3      (1)
Подставим координаты точки С
6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а     (2)
Подставим (2) а (1)
а + 2 - 6а = -3 → а = 1
Из (2) получим в = -4
Итак, мы получили уравнение параболы:
у = х² - 4х - 6
Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2
Ординату вершины параболы найдём,
подставив в уравнение параболы х = m = 2
у =  2² - 4 · 2 - 6 = -10
ответ: вершиной параболы является точка с координатами (2; -10)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Как решить этот определенный интеграл? интеграл с верхней границей pi/4 и нижней выражение arctgxdx
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sakalrip
coalajk
margo55577869
alenih13
milleniumwood633
perova-s200
Александровна1685
premiumoft
Владимировна Екатерина
Выражения 1)1+cos2x+2sin^2x 2)2sin^2a-1 3)sin^2x+cos^4x-0, 75 4)2cos^2x-1
shangina1997507
Мечиславович_Кварацхелия1988
NIKOLAI
sky-elena712558
bagramyansvetlana
ЕкатеринаРустам