х-числитель искомой дроби, тогда (х+2) - знаменатель ее. обратная к искомой дроби будет (х+2)/х. Можно составить уравнеие:
х/(х+2) + (х+2)/х = 130/63
ОДЗ: х не равен 0 и х не равно -2. и еще х должен быть положительным.
приводим к общему знаменателю слагаемые:
(х²+(х+2)²) / (х*(х+2)) = 130/63
(х²+х²+4х+4) / (х*(х+2)) = 130/63
(2х²+4х+4) / (х*(х+2)) = 130/63
63(2х²+4х+4) = 130*х*(х+2)
сократим на 2 обе части:
63х²+126х+126=65х²+130х
2х²+4х-126=0
х²+2х-63=0
Д=4+252=256-2 корня
х1=(-2+16)/2=14/2=7
х2=(-2-16)/2=-18/2=-9 - не удовлетворяет ОДЗ, значит не подходит
Находим знаменатель дроби: 7+2=9
Получили дробь: 7/9.
Проверка:
7/9 + 9/7 = (49+81)/63 = 130/63 - верно
ответ: искомая дробь: 7/9.
Объяснение:
Пусть скорость пешехода - х км/час
а скорость велосипедиста - y км/час
Длина пути от города до деревни : 30 км
1) Велосипедист выехал на 45 мин позже пешехода и был в пути 30 мин.
30 мин = 30/60 = 0,5 часа
Расстояние , которое проехал велосипедист составило : 0,5y км
Пешеход был в пути :
45 мин +30 мин= 75 мин
75 мин = 75/60= 1,25 часа
Расстояние , которое пешеход составило : 1,25х км
Велосипедист был позади пешехода на 2,5 км , значит можем составить первое уравнение :
1,25x -0,5y= 2,5 (1)
2) Велосипедист ехал еще 30 мин , значит общее время составило :
30 мин +30 мин = 1 час , а расстояние , которое он преодолел было :
1*y км
Время движения пешехода было : 75 мин. +30 мин= 105 мин
105 мин = 105/60= 1,75 часа, расстояние он преодолел : 1,75x км
При этом велосипедист был на 0,5 км от деревни дальше , чем пешеход . Можем составить второе уравнение:
1,75х - y =0,5 ( 2)
Получаем систему уравнений :
Домножим первое уравнение на 2
отнимем от первого уравнения второе
0,75х= 4,5
х= 4,5 : 0,75
х= 6 км/час - скорость пешехода
подставим значение х в любое уравнение и найдем y
2,5*6-y= 5
15-y= 5
y= 15-5=10 км/час - скорость велосипедиста
Поделитесь своими знаниями, ответьте на вопрос:
0, 32m^7n4*(-3 1/8m^3n^6) / - дробная черта ^ - показатель степени описать все подробно и понятно)
=1*m^28n*m^18n=m^(28+18)=m^46.