. Докажем методом мат. индукции. При n = 1 имеем: , т.е. при n = 1 высказывание верно. Предполагая верность высказывания при некотором натуральном n = k, докажем верность высказывания при n = k+1. Т.е. пусть делится на 19. Докажем, что также делится на 19. В самом деле, . Первое слагаемое, очевидно, делится на 19. Второе слагаемое также делится на 19 в силу исходного предположения о делимости на 19 числа . Значит вся сумма делится на 19. Таким образом, на основании метода математической индукции, заключаем, что высказывание верно для любого натурального n.
shajmasha
12.03.2020
Пусть мальчиков m, девочек d. Тогда 100% * m + 100% * d = 130% * m + 50% * d 30 % m = 50% d 3m = 5d
Так как 30% * m = 3m/10 - целое число, то m делится на 10. Обозначим m = 10M и подставим в равенство. 3 * 10M = 5d 6M = d
Отсюда число девочек делится на 6 (заметим, что при этом условии 50% девочек - гарантированно целое число). После обозначения d = 6D равенство превращается в издевательское: 6M = 6D M = D
Очевидно, минимум будет достигаться, если M = D = 1. Тогда m = 10 и d = 6.
Можно было сразу после заключения о том, что m делится на 10, начать перебирать возможные m. ответ при этом получился бы быстрее.
Ананян Иван1281
12.03.2020
№ 6. В 2004 году дтп стало на 5% меньше, то есть стало 95 % от 2003 года. Решаем так; 100% - 160 дтп; 95% - х дтп. 100* х = 95*160; 100 х = 15200. х = 15200: 100; х= 152.
№ 7. 20 клеток увеличить на 10% - значит увеличить его на 1/10, то есть на 2 клетки. Всего 22 клетки. Уменьшить на 20 % - значит уменьшить отрезок на 1/5 часть, то ест на 4 клетки. Получится всего 16 клеток.
№12. Если клиент через год получит в банке прибыль 12 %, то сумма его денег станет равна 100% + 12% = 112%. Составим пропорцию: 112 % - 800 рублей; 100% - х рублей. Умножим крестиком; 112* х = 100*800; 112 х = 80000; х = 80000: 112; х≈714, 285. Округляем до целого числа, то есть до рублей. ответ ; он положил в банк 714 рублей
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Доказать, что выражение 7*5^2n+12 *6^n делится нацело на 19
Докажем методом мат. индукции.
При n = 1 имеем:
,
т.е. при n = 1 высказывание верно.
Предполагая верность высказывания при некотором натуральном n = k, докажем верность высказывания при n = k+1. Т.е. пусть делится на 19.
Докажем, что также делится на 19. В самом деле, .
Первое слагаемое, очевидно, делится на 19. Второе слагаемое также делится на 19 в силу исходного предположения о делимости на 19 числа . Значит вся сумма делится на 19.
Таким образом, на основании метода математической индукции, заключаем, что высказывание верно для любого натурального n.