2 и 4
Объяснение:
Пусть x это первое натурально, у второе натуральное число, х€N, у€N
По условию
Х*У<20
{2у-х=6
Решим второе неравенство
-Х=6-2у; Х=2у-6, подставим в первое
(2у-6) у<20
2у²-6у<20| разделим на 2
У²-3у-10<0
По теореме Виета у1*у2=-10; у1+у2=3
У1=-2; у2=5
Так как у²-3у-10 парабола с ветвями вверх и нам надо <0, то у€(-2;5), так как числа натуральные, то из (-2;5) подойдут 1,2,3,4
Проверим у=1, тогда 2*1-х=6, х=-4 не подходит, так как х не натуральное число
У=2, тогда 2*2-х=6; х=-2 не подходит
У=3, тогда 2*3-х=6, Х=0 не подходит
У=4, тогда 2*4-х=6; Х=2 подходит
Проверим
Х=2, у=4
2*4-2=6; 6=6 верно
2*4<20 верно
Тогда наши натуральные числа это 2 и 4
x + y = П/4
sinx/cosx + siny/cosy = 1 | x,y <> П/2 + Пk
sinx*cosy + siny*cosx = cosx*cosy
sin(x+y) = cosx*cosy
cosx*cosy = sin(П/4)
cosx*cos(П/4-x) = sin(П/4)
cosx*(cos(П/4)*cos(x) + sin(П/4)*sin(x)) = sin(П/4) | cos(П/4) = sin(П/4)
cosx*(cosx+sinx) = 1
cos^2x + cosx*sinx = 1
cosx*sinx - sin^2x = 0
sinx*(cosx - sinx) = 0
sinx = 0 -> x = Пk, y = П/4 - Пk
cosx = sinx -> x = П/4 - Пk, y = Пk
cos^2x = sinx*siny
sin^2x = cosx*cosy
1 = sinx*siny + cosx*cosy
1 = cos(x-y)
x-y = П/2 + 2Пk, y = x + П/2 + 2Пk
cos^2x = sinx*sin(x+П/2) = sinx*cosx -> cosx = 0 | cosx = sinx
sin^2x = cosx*cos(x+П/2) = cosx*(-sinx) -> sinx = 0 | sinx = -cosx
--> cosx = 0 | sinx = 0 --> x = Пn/2, y = П(n+1)/2 + 2Пk
cosx*sqrt(cos2x) = 0 | cos2x >= 0
2sin^2x = cos(2y-П/3) | 2sin^2x <= 1
cosx*sqrt(cos^2x - sin^2x) = 0
cosx*sqrt(1 - 2sin^2x) = 0
cosx*sqrt(1 - cos(2y-П/3)) = 0
cosx = 0 -> x = П/2 + Пk - > 2sin^2x > 1 - не подходит
cos(2y-П/3) = 1 - > 2y - П/3 = П/2 + 2Пk -> y = 5П/12 + Пk | cos2x = 1 - 2sin^2x = 1 - cos(2y-П/3) = 0 -> x = П/4 + Пn/2
--> x = П/4 + Пn/2, y = 5П/12 + Пk/2
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
С, я ничего не понимаю, , с решением 50 хотя бы 2 сделать, чтобы 3 получить
ответ:
решение выполнено на фото